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Abstract

Dias Garcia, Joaquim; Street, Alexandre (Advisor); Pereira, Ma-
rio (Co-Advisor). The Effectiveness of Bilevel Optimization
in Large-Scale Power Systems Problems - A Bilevel Op-
timization Toolbox, a Framework for Application-Driven
Learning, and a Market Simulator. Rio de Janeiro, 2022. 150p.
Tese de Doutorado – Departamento de Engenharia Elétrica, Ponti-
fícia Universidade Católica do Rio de Janeiro.

Bilevel Optimization is an extremely powerful tool for modeling realistic
problems in multiple areas. On the other hand, Bilevel Optimization is known
to frequently lead to complex or intractable problems. In this thesis, we
present three works expanding the state of the art of bilevel optimization
and its intersection with power systems. First, we present BilevelJuMP, a
novel open-source package for bilevel optimization in the Julia language. The
package is an extension of the JuMP mathematical programming modeling
language, is very general, feature-complete, and presents unique functionality,
such as the modeling of lower-level cone programs. The software enables
users to model a variety of bilevel problems and solve them with advanced
techniques. As a consequence, it makes bilevel optimization widely accessible
to a much broader public. In the following two works, we develop specialized
methods to handle much model complex and very large-scale bilevel programs
arising from power systems applications. Second, we use bilevel programming
as the foundation to develop Application-Driven Learning, a new closed-loop
framework in which the processes of forecasting and decision-making are
merged and co-optimized. We describe the model mathematically as a bilevel
program, prove convergence results and describe exact and tailor-made heuris-
tic solution methods to handle very large-scale systems. The method is applied
to demand forecast and reserve allocation in power systems operation. Case
studies show very promising results with good quality solutions on realistic
systems with thousands of buses. Third, we propose a simulator to model
long-term bid-based hydro-thermal power markets. A multi-stage stochastic
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program is formulated to accommodate the dynamics inherent to hydropower
systems. However, the subproblems of each stage are bilevel programs in
order to model strategic agents. The simulator is scalable in terms of system
data, agents, scenarios, and stages being considered. We conclude the third
work with large-scale simulations with realistic data from the Brazilian power
system with 3 price maker agents, 1000 scenarios, and 60 monthly stages.
These three works show that although bilevel optimization is an extremely
challenging class of NP-hard problems, it is possible to develop effective
algorithms that lead to good-quality solutions.

Keywords
Stochastic Optimization; Bilevel Optimization; Julia Language; Power

Systems Economics; Machine Learning.
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Resumo
Dias Garcia, Joaquim; Street, Alexandre; Pereira, Mario. A Efi-
cácia da Otimização de Dois Níveis em Problemas de Sis-
temas de Potência de Grande Porte - Uma Ferramenta
para Otimização de Dois Níveis, uma Metodologia para
Aprendizado Dirigido pela Aplicação e um Simulador de
Mercado. Rio de Janeiro, 2022. 150p. Tese de Doutorado – Depar-
tamento de Engenharia Elétrica, Pontifícia Universidade Católica
do Rio de Janeiro.

A otimização de binível é uma ferramenta extremamente poderosa para
modelar problemas realistas em várias áreas. Por outro lado, sabe-se que a oti-
mização de dois níveis frequentemente leva a problemas complexos ou intratá-
veis. Nesta tese, apresentamos três trabalhos que expandem o estado da arte da
otimização de dois níveis e sua interseção com sistemas de potência. Primeiro,
apresentamos BilevelJuMP, um novo pacote de código aberto para otimiza-
ção de dois níveis na linguagem Julia. O pacote é uma extensão da linguagem
de modelagem de programação matemática JuMP, é muito geral, completo e
apresenta funcionalidades únicas, como a modelagem de programas cônicos no
nível inferior. O software permite aos usuários modelar diversos problemas de
dois níveis e resolvê-los com técnicas avançadas. Como consequência, torna a
otimização de dois níveis amplamente acessível a um público muito mais am-
plo. Nos dois trabalhos seguintes, desenvolvemos métodos especializados para
lidar com modelos complexos e programas de dois níveis de grande escala de-
correntes de aplicações de sistemas de potência. Em segundo lugar, usamos a
programação de dois níveis como base para desenvolver o Aprendizado Diri-
gido pela Aplicação, uma nova estrutura de ciclo fechado na qual os processos
de previsão e tomada de decisão são mesclados e co-otimizados. Descrevemos o
modelo matematicamente como um programa de dois níveis, provamos resul-
tados de convergência e descrevemos métodos de solução heurísticos e exatos
para lidar com sistemas de grande escala. O método é aplicado para previsão de
demanda e alocação de reservas na operação de sistemas de potência. Estudos
de caso mostram resultados muito promissores com soluções de boa qualidade
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em sistemas realistas com milhares de barras. Em terceiro lugar, propomos
um simulador para modelar mercados de energia hidrotérmica de longo prazo
baseados em ofertas. Um problema de otimização estocástica multi-estágio é
formulado para acomodar a dinâmica inerente aos sistemas hidrelétricos. No
entanto, os subproblemas de cada etapa são programas de dois níveis para
modelar agentes estratégicos. O simulador é escalável em termos de dados do
sistema, agentes, cenários e estágios considerados. Concluímos o terceiro tra-
balho com simulações em grande porte com dados realistas do sistema elétrico
brasileiro com 3 agentes formadores de preço, 1000 cenários e 60 estágios men-
sais. Esses três trabalhos mostram que, embora a otimização de dois níveis
seja uma classe extremamente desafiadora de problemas NP-difíceis, é possível
desenvolver algoritmos eficazes que levam a soluções de boa qualidade.

Palavras-chave
Otimização Estocástica; Otimização Binível; Linguagem Julia; Econo-

mia dos Sistemas de Potência; Aprendizado de Máquina.
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I think that it is a relatively good approxima-
tion to truth — which is much too com-
plicated to allow anything but approxi-
mations — that mathematical ideas originate
in empirics.

John von Neumann, The Mathematician, in Works of the Mind.
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1
Introduction

Bilevel Optimization (BO) is an extremely powerful class of optimization
problems and a core subject of the three works in this thesis [1, 2, 3]. Such a
framework can be used to describe unique mathematical models. Historically,
BO is deeply related to game theory as it is equivalent to Stackelberg Games,
in which agents interact strategically [4]. Moreover, it has proven to be useful
for modeling parameter tunning problems in machine learning [5].

On the other hand, solving bilevel problems is very difficult. The first
main reason is that bilevel optimization is inherently challenging as it is
NP-Hard to solve general problems of this class [6]. Therefore, specialized
algorithms are usually necessary to solve approximately large-scale instances
of interest. Secondly, although some techniques are available in the literature
to exactly solve BO problems, many (error-prone) steps are required on the
user side to apply these methods because there is a limited number of modeling
frameworks and solvers available.

The goal of this thesis is to demonstrate the effectiveness of bilevel op-
timization and present solution techniques that convert such complex models
into practically tractable problems. By practically tractable, we mean a prob-
lem that can be NP-hard but can be solved within reasonable computational
time, at least for meaningful instances that are relevant to real-world applica-
tions.

To achieve that goal, we present three works as follows. We start with
an open-source software, or program, named BilevelJuMP:

[1] - Dias Garcia, J., Bodin, G., and Street, A. (2022). BilevelJuMP.jl:
Modeling and Solving Bilevel Optimization in Julia. arXiv preprint
arXiv:2205.02307.

A specialized library for bilevel optimization based on the JuMP library
in the Julia language is detailed in this first work. The developed software
allows users to easily formulate and solve bilevel optimization problems. We
highlight that the software is very complete in terms of functionality, including
features such as modeling conic optimization problems and representing the
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Chapter 1. Introduction 21

dual variables in the model. Examples are presented to depict syntax and
usage. This tool greatly reduces barriers between users and the BO technology,
making it much more accessible to a broad range of users. Such users include
both newcomers to the field of bilevel optimization willing to model their
first problems and advanced users aiming to experiment and benchmark more
sophisticated techniques.

In addition, we present a novel framework to find the best forecast for a
given application:

[2] - Dias Garcia, J., Street, A., Homem-de-Mello, T., and Muñoz, F.D., 2021.
Application-Driven Learning via Joint Prediction and Optimization of Demand
and Reserves Requirement. arXiv preprint arXiv:2102.13273.

In which we describe a methodology to jointly predict demand and optimally
allocate reserves based on the cost function of the actual application, that
is, the re-scheduling of the power system in real-time operation. This is a
closed-loop method in which a parametric forecast method is trained based on
the final assessed cost from a real-time adaptation from a previous plan that
was optimized based on the forecast. The mathematical model is a stochastic
bilevel program that is solved exactly on small instances and sub-optimally on
very large-scale instances, but in both cases, the results are superior than the
benchmarks.

Finally, we develop a power system application that requires bilevel
programming to model the strategic behavior of agents in a hydrothermal
power market:

[3] - Dias Garcia, J., Street, A., and Pereira, M. (2022). Long-term Hydro-
thermal Bid-based Market Simulator with Case Studies in the Brazilian
System. Unpublished.

This presents a simulator for a very challenging power market setting since
the presence of hydropower plants adds complexity, such as time coupling and
uncertainty, to the market optimization problems. We propose a methodology
that is scalable in terms of the number of scenarios, stages and system
representation. A case study with data from Brazil serves as background to
demonstrate the capabilities of the tool.
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The three works are fundamentally connected by having bilevel opti-
mization at their core. The first work is mostly focused on bilevel optimization
and describes software. Such software was used in the case studies of the sec-
ond work and during the development of the third as a reference for testing
approximations presented there. The second and third works contain power
systems applications and are deeply connected to stochastic programming as
well. Due to the large-scale nature of the problems in the two last works, spe-
cial algorithms were developed to obtain good quality approximate solutions
for practical problems.

In the following Chapters 2, 3 and 4, each work is presented in a
completely self-contained fashion reproducing the corresponding publication.
Conclusions and future research directions are summarized in Chapter 5. The
references are unified.

The remainder of this introduction will briefly describe some fundamental
concepts which are assumed as prerequisites by the three main works of this
thesis. The goal of those sections is not to go into detail but to provide
nomenclature and references for interested readers. In the last section of this
chapter, we will present other works that were developed during the Ph.D.
studies but are not part of this thesis.

1.1
Optimization

According to the Encyclopedia Britannica [7]:
“Optimization, also known as mathematical programming, collection of mathe-
matical principles and methods used for solving quantitative problems in many
disciplines, including physics, biology, engineering, economics, and business.”

In a fairly general (and loose) setting, we consider the problem of finding
the values of the vector of variables x for which the smallest possible value of
an objective function f is attained, given constraints represented by the set
X. The mathematical formulation of the previous sentence is:

min
x
f(x) (1-1)

s.t.

x ∈ X (1-2)

In the case where f is linear and X can be represented as affine inequalities,
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we can write:

min
x
c⊤x (1-3)

s.t.

Ax ≤ b (1-4)

which is known as Linear Programming (LP) and is one of the key workhorses
of more general settings and applications. Linear programming dates back
to the works of Dantzig [8, 9, 10] and Kantorovich [11], although Fourier
had previously analysed the problem [8, 12]. Introductions to the subject can
be found in [13] and [14]. Algorithms are very well developed for this class
of problems, the most widely used being the Simplex Method and Interior
Point Methods, both able to find globally optimal solutions very efficiently in
practice.

A more complex case where f is still linear and X can be represented
by an intersection of convex cones is known as Conic Programming (CP).
[15], [16] and [17] are excellent introductions to the subject. Interior Point
Methods generalized well to CP and are good theoretical tools to find globally
optimal solutions, although there is more current research to solve larger scale
problems.

Non-Linear Programming (NLP) is a third setting where f can be almost
any function and X is represented by the intersection of nonlinear inequalities.
When all the functions are convex, NLP is called convex programming, in
which interior point methods are also a powerful tool to find globally optimal
solutions. The general non-convex setting is much more complex and even
small-scale instances might be very hard to solve. Introductions to NLP can
be found at [18, 19].

In all the above settings, we could constrain some of the variables to be
integer (or binary). Whenever this happens in the LP case, we call it Mixed
Integer LP (MILP) or also Mixed Integer Programming (MIP) [20]. This class
of problem can also be very challenging since there are no theoretically efficient
methods. However, many problems of interest can be solved in a reasonable
time which makes MIP extremely useful for practitioners. A great advance
has been seen in the last two decades with improvements in the order of 1000
combining hardware and software developments [21].

In the next two sections, we will highlight two important extensions of
Mathematical Programming and then we will discuss software for optimization.
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1.1.1
Stochastic Optimization

Stochastic Programming is an extension of mathematical programming
to consider random variables besides the previously presented standard struc-
ture with decision variables, objective function and constraints. Introductory
expositions can be found in [22, 23]. Stochastic Programming is typically con-
sidered a sub-field of optimization under uncertainty.

One of the most common frameworks for stochastic programming is the
two-stage stochastic program, which, in the LP case, can be formulated as
follows:

min
x
c⊤x+ Eξ[Q(x, ξ)] (1-5)

s.t.

Ax ≤ b (1-6)

with

Q(x, ξ) = min
y
q(ξ)⊤y (1-7)

s.t.

W (ξ)y ≤ h(ξ)− T (ξ)x (1-8)

Where (1-5)–(1-6) represents the first stage problem, ξ is a random variable,
(1-7)–(1-8) is the recourse problem. We highlight that all data from the
recourse problem might depend on ξ.

Another generalization on top of two-stage stochastic programs is the
multi-stage stochastic optimization (MSO) framework. In MSO first-stage
decisions, random variable realizations and recourse actions are chained so
that the recourse of a stage t is the first stage decision of stage t + 1. A
mathematical formulation, with the notation from [24], goes as follows:

min
(x1,y1)∈F1

{
f1(x1, y1) + Eξ̃[1,T ]|ξ[1,1]

[
min

(x2,y2)∈F2(x1,ξ2)

{
f2(x2, y2, ξ2) + ... (1-9)

+Eξ̃[T,T ]|ξ[1,T −1]

[
min

(xT ,yT )∈FT (xT −1,ξT )

{
fT (xT , yT , ξT )

}]
...

}]}
(1-10)

where Ft(xt−1, ξt) represents the constraints at stage t given the previous
stage solution xt−1 and the random variable realization ξt. Eξ̃[t,T ]|ξ[1,t−1]

is the
conditional expectation with respect to the distributions of ξ̃[t,T ] given the
previous realizations ξ[1,t−1]. More information can be found in [25, 26].

We highlight that there are other frameworks for decision under uncer-
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tainty, such as Robust Optimization [27] and Chance Constrained Optimiza-
tion [28], which will not be explored in this thesis.

1.1.2
Bilevel Optimization

Bilevel Optimization is another extension of Mathematical Programming
in which one (or more) constraint of the optimization problem is another
optimization problem.

This framework is extremely flexible and is equivalent to Stackelberg
Games, in which two agents interact in chronological order. First, the leader,
represented by the outer (or upper) optimization problem, makes a decision,
and then the follower, represented by the inner (or lower) optimization prob-
lem, reacts. The leader will then choose the best possible action based on
the follower’s reactions. Introductions to bilevel optimization can be found in
classic textbooks [29, 30] and in recent surveys [31, 32].

A mathematical formulation of the linear case is given by:

min
x,y

c⊤x+ d⊤y (1-11)

s.t.

Ax+By ≤ b (1-12)

y ∈ arg min
y

e⊤x+ f⊤y (1-13)

s.t.

Gx+Hy ≤ h (1-14)

where (1-11)–(1-12) is the upper-level problem and (1-13)–(1-14) is the lower-
level problem . The variable x is the upper-level decision variable and y is also
a decision variable in the upper problem, which is constrained to be a solution
to the lower-level problem. Note that x is treated as a parameter in the lower
level, while y is the only decision variable in the lower-level problem.
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A more general version of the above is:

min
x,y,π

c⊤x+ d⊤y + g⊤π (1-15)

s.t.

Ax+By + Cπ ≤ b (1-16)

y, π ∈ arg min
y

e⊤x+ f⊤y (1-17)

s.t.

Gx+Hy ≤ h : π (1-18)

where the dual variable, π, of the lower-level problem can be used in the upper-
level model.

Of course, it is also possible to combine bilevel and stochastic optimiza-
tion as reviewed in [33] as we are going to do in the following chapters of this
thesis.

1.1.3
Software for Optimization

The field of optimization includes theoretical works, but applied meth-
ods are of utmost importance. In applications, practitioners must declare their
abstract mathematical models in a concrete form to computers and then apply
numerical algorithms to solve these problems. Therefore, software for optimiza-
tion comes in two main flavors, frequently interlaced: modeling frameworks and
solvers.

Modeling frameworks are designed to bridge the mathematical models
to concrete data structures that can be communicated to solvers. Modern
frameworks frequently fall in the scope of Algebraic Modeling Languages
(AML) that attempt to keep the computer code similar to handwritten (or
LATEX) models. These tools are not essential in the strict sense since users can
communicate raw data to solvers. For instance, in the case of LP, matrices
can be constructed and used to represent constraint data. However, AMLs can
make the code simpler and consequently more robust and easy to extend. Well-
know AMLs include AMPL[34], GAMS[35], Pyomo[36] and JuMP[37, 38, 39].
While the first two are almost computer languages on their own, the latter two
packages are built on top of the general programming languages Python[40]
and Julia[41].

JuMP was a fundamental cornerstone in this thesis since absolutely all
models described in the following chapters were coded in JuMP. In fact, the
work on Chapter 2 is even more tied to JuMP since it is a JuMP extension to
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handle Bilevel Optimization.
The second fundamental piece of software for optimization, solvers,

implements state-of-the-art or innovative algorithms to solve various classes
of problems. Results in this thesis would not be possible without these solvers.
Although we refer to many of them in the benchmarks of Chapter 2, we strongly
used state-of-the-art MIP solvers Gurobi[42] and Xpress[43] in Chapters 3 and
4 respectively.

1.2
Power Systems

Power systems is a very large research area that includes many different
subfields. For instance, reliability and stability analysis, forecasting, transmis-
sion and distribution networks, expansion planning, operation, economics and
much more. All of these subareas are related and frequently it is hard to talk
about one without mentioning another. Optimization is used in all the above-
cited subareas, sometimes as the key tool and sometimes as a side tool. We
will focus on operation planning, economics and their intersection with opti-
mization frameworks.

1.2.1
Operation Planning

One of the central themes in operation planning of power systems is the
economic dispatch problem [44, 45]. In this problem, we consider a load D that
must be met by the generation gi of a set of power plants, I, with capacity Gi

and variable unit cost Ci. In mathematical terms:

min
gi

∑
i∈I

Cigi (1-19)

s.t.∑
i∈I

gi = D (1-20)

0 ≤ gi ≤ Gi, ∀i ∈ I (1-21)

This is one of the simplest optimization models in operation planning, and it
is an LP.

Considering additional features in this problem will require more complex
models, sometimes still LPs but other times MIPs, CPs and NLPs. Moreover,
other models will require advanced frameworks such as Stochastic and Bilevel
Optimization (or even both).
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For instance, a simple model that considers fixed operation costs F will
require binary variables x that will represent whether the generator is active,
1, or inactive, 0:

min
gi,xi

∑
i∈I

Cigi +
∑
i∈I

Fixi (1-22)

s.t.∑
i∈I

gi = D (1-23)

0 ≤ gi ≤ Gixi, ∀i ∈ I (1-24)

xi ∈ {0, 1}, ∀i ∈ I (1-25)

which is a MIP that can be extended to consider additional constraints such as
multiple time steps, ramp, uptime, and downtime leading to a problem known
as Unit Commitment (UC) [46, 47].

Note that the loads considered in the above problems are forecasts since
they are not perfectly known in advance. As forecasts, they are generated by a
statistical or a machine learning method that is obtained by solving specialized
optimization problems [48].

Other features can be added on top of the above-described problems, such
as the physical rules of power flows that can either be linearized or considered
in more detail as non-linear constraints, which would make the problem an
NLP [49]. A third alternative is to consider conic convex approximations of
the non-linear power flow constraints so that global optimality can be proved
efficiently. This would turn the problem into a CP [50, 51].

If we consider uncertainties in the economic dispatch problem, for in-
stance, by replacing point forecasts with probabilistic forecasts, we obtain
stochastic programs which can be two-stage or even multistage if multiple
time steps are considered [52]. However, it might be hard to solve the stochas-
tic program or even to formulate it if very little is known about the random
variables. A common strategy is to consider reserves, which are generation slots
allocated to generators in an economic dispatch but are not deployed initially.
Instead, those are only deployed in real time to adapt the system operation to
the realized uncertainties [53, 54].

Another reason to consider MSO is explicitly modeling hydro plants
and reservoirs in the economic dispatch [55, 52]. Reservoirs act like large
batteries, therefore, time coupling is strong and multiple stages must be
considered. Moreover, incoming water is uncertain and, hence, treated as a
random variable.

On the other hand, the simple economic dispatch might be made complex
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by considering the strategic behavior of different players [56, 57]. For instance,
in a setting where the generators can offer their costs and capacities at will, a
generator might choose to optimally reduce the available capacity or increase
it. This leads to the following bilevel problem:

min
q,g,π

πg0 (1-26)

s.t.

0 ≤ q ≤ G0 (1-27)

g, π ∈ arg min
g,π

C0g0 +
∑
i∈I

Cigi (1-28)

s.t.

g0 +
∑
i∈I

gi = D : π (1-29)

0 ≤ g0 ≤ q (1-30)

0 ≤ gi ≤ Gi, ∀i ∈ I (1-31)

where a strategic player indexed by 0 optimizes its quantity offer q trying
to optimize its spot revenue. π is the spot price, the dual variable of the
load balance constraint (1-29) in the economic dispatch of the inner (follower)
subproblem (1-28)–(1-31). We follow the most common approach in the power
systems literature, where games are in terms of prices [56] and also highlight
that the Stackelberg game where a player chooses quantities first and the other
follows is different com Cournot games, where players play simultaneously [58].

Many other power systems models have used bilevel optimization for
various tasks. Another special case of bilevel problems in power systems is
their relation with forecasting. In particular, hyperparameter tuning and other
bilevel models can be used to train statistical and machine learning models with
non-standard cost functions such as [59] and [5]. This is particularly important
to this thesis as it is deeply related to Chapter 3.

1.3
Papers not in this thesis

Finally, we conclude the introduction with a list of other works developed
during the Ph.D. program that are not direct parts of this thesis. Nevertheless,
many works led to tools and software developments that were used in this
thesis.

[39] - Lubin, M., Dowson, O., Garcia, J. D., Huchette, J., Legat, B., and Vielma,
J. P. (2022). JuMP 1.0. arXiv preprint arXiv:2206.03866.
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[60] - Sharma, A., Besançon, M., Garcia, J. D., and Legat, B. (2022). Flex-
ible Differentiable Optimization via Model Transformations. arXiv preprint
arXiv:2206.06135.

[61] - Souto, M., Garcia, J.D. and Veiga, Á., 2022. Exploiting low-rank
structure in semidefinite programming by approximate operator splitting.
Optimization, 71(1), pp.117-144.

[62] - Soares, A., Street, A., Andrade, T. and Garcia, J.D., 2022. An Integrated
Progressive Hedging and Benders Decomposition with Multiple Master Method
to Solve the Brazilian Generation Expansion Problem. IEEE Transactions on
Power Systems.

[63] - Legat, B., Dowson, O., Garcia, J.D. and Lubin, M., 2021. MathOptIn-
terface: a data structure for mathematical optimization problems. INFORMS
Journal on Computing.

[64] - Rosemberg, A.W., Street, A., Garcia, J.D., Valladão, D.M., Silva, T. and
Dowson, O., 2021. Assessing the Cost of Network Simplifications in Long-Term
Hydrothermal Dispatch Planning Models. IEEE Transactions on Sustainable
Energy, 13(1), pp.196-206.

[65] - da Costa, L.C., Thomé, F.S., Garcia, J.D. and Pereira, M.V., 2020.
Reliability-constrained power system expansion planning: A stochastic risk-
averse optimization approach. IEEE Transactions on Power Systems, 36(1),
pp.97-106.

[66] - Rosemberg, A.W., Street, A., Garcia, J.D., Silva, T., Valladão, D.M.
and Dowson, O., 2020, July. HydroPowerModels.jl: A Julia/JuMP package for
hydrothermal economic dispatch optimization. In Proceedings of the JuliaCon
Conferences (Vol. 1, No. 1, p. 35).
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2
BilevelJuMP.jl:
Modeling and Solving Bilevel Optimization in Julia

In this chapter, we present BilevelJuMP, a new Julia package to support
bilevel optimization within the JuMP framework. The package is a Julia library
that enables the user to describe both upper and lower-level optimization
problems using the JuMP algebraic syntax. Due to the generality and flexibility
our library inherits from JuMP’s syntax, our package allows users to model
bilevel optimization problems with conic constraints in the lower level and all
JuMP-supported constraints in the upper level (Conic, Quadratic, Non-Linear,
Integer, etc.). Moreover, the user-defined problem can be subsequently solved
by various techniques relying on mathematical programs with equilibrium
constraints (MPEC) reformulations. Manipulations on the original problem
data are possible due to MathOptInterface.jl’s structures and Dualization.jl
features. Hence, the proposed package allows quickly modeling, deployment,
and thereby experimenting with bilevel models based on off-the-shelf mixed
integer linear programming and nonlinear solvers.

2.1
Introduction

Bilevel optimization has been a widely used modeling tool in mathemat-
ical programming, operations research, and economics since its first introduc-
tion by [67] in game theory. The broad range of applications includes hyper-
parameter optimization in machine learning [5], toll setting in transportation
networks [68], multiple problems in energy and power systems [69], defense
applications [70], facility location [71] only to list a few areas.

Complete introductions to bilevel optimization can be found in books
covering theoretical background and analysis, taxonomy, solutions algorithms
for special classes, and selected applications [29, 30, 72]. In addition to
books, many reviews on the subject have been published in the last decades
[73, 74, 75, 31]. A very long list of publications related to bilevel optimization
can be found in [32].

It is well known that general bilevel optimization problems fall in the NP-
hard class [6]. Hence, there is no hope of finding efficient algorithms for generic
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problems. On the other hand, modeling bilevel problems is a theoretically more
straightforward task, albeit, in practice, the modeling step can be the difference
between finding a tractable model for which there is a reasonable solution
approach in realistic cases or not. Because bilevel models are very complex
and constitute a broad class of mathematical programming problems, many
modeling languages lack the proper functionality to handle these problems.

In the following subsections, we present the main literature regarding
available techniques and software to place and justify the contribution of
our work properly. Notwithstanding, it is out of the scope of this section to
provide a comprehensive review on the subject, for which we refer to previously
reported books and reviews.

2.1.1
Solving bilevel optimization

Many strategies have been proposed to solve Bilevel Optimization prob-
lems. Some of the most widely known techniques are based on classical al-
gorithms, such as the simplex method, the branch and bound method, and
the interior-point methods. Due to the inherent combinatorial nature of many
Bilevel optimization problems, some of the first developed techniques are in-
trinsically combinatorial. Among a large set of enumeration algorithms, which
can be seen as modifications of the simplex method for linear programming,
we highlight the Kth-best algorithm [76].

The fundamental technique that will be explored in this work is convert-
ing the bilevel problem into a single-level problem by adding the lower-level
KKT conditions to the upper-level problem. The resulting optimization prob-
lem is known as Mathematical Programming with Equilibrium Constraints,
MPEC [77]. This group of techniques has also been labeled enumeration-based
because handling the complementarity constraints is a combinatorial problem.
Thus, a classic solution is a specially tailored Branch and Bound [78, 79].
Instead of writing a branch and bound method from scratch, one could re-
formulate the single-level problem into an amenable form for an off-the-shelf
algorithm like mixed integer programming (MIP) solvers. This method was
first presented relying upon big-M formulations in [80]. More recently, formu-
lations based on special ordered set of type 1, SOS1, were developed in [81].

Interestingly, non-linear programming (NLP), with additional regulariza-
tion terms, can also be used to solve MPECs [82, 83, 84]. In this case, it would
not make as much sense to call the MPEC reformulations an enumeration-
based method. On the other hand, the latter might be called local search
methods, as this strategy leads to local solutions, in contrast with the global
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ones provided by MIP-based methods. Some solvers were specially tailored to
tackle MPEC’s: KNITRO [85], filterMPEC [86, 82], NLPEC [87]. A combina-
tion of NLP and MIP-based methods was proposed by [88].

Other strategies to solve bilevel problems include: bundle type algorithms
[89], semi-definite relaxations [90], penalty function based methods [91, 92,
93], Benders decomposition [94]. Cutting-plane approaches [95, 96, 97] have
received attention recently because they can handle lower-level problems with
integer variables — solvers were developed by [98, 99]. Descent methods were
proposed by [100] and [101] to obtain quick local solutions. Heuristic methods
were also developed to obtain practical solutions, for instance, the bi-objective-
based method of [102]. Finally, we refer to [103] for evolutionary approaches.

2.1.2
Modeling bilevel optimization

Algebraic modeling languages (AML) play a central role in unlocking
the huge potential of optimization models through a friendly environment
that integrates solvers and models in a very practical manner where problems
of all disciplines can be efficiently modeled and solved. Bilevel Optimization
interfaces, which mostly automate reformulations and pass to specific solver
types, have also been proposed.

GAMS has an interface described in its Extended Mathematical Pro-
gramming, [104]. Variables and constraints are created as usual, and then they
are annotated to specify the level they belong to in an external file. The an-
notated problem is reformulated by GAMS EMP routines using the KKT
reformulations [105]. Finally, the problem is optimized by the available MPEC
solvers, namely, the above-cited KNITRO and NLPEC. The follower subprob-
lems can be linearly constrained with quadratic objectives (QP) or Variational
Inequalities (VI). The upper-level problem is constrained by the selected solver
capability.

The YALMIP MATLAB package for optimization modeling [106] also
provides a Bilevel Optimization interface [107]. The variables and constraints
are defined by the standard methods, and then they are passed as lists to a
“solvebilevel” function. The lower level problem can be a QP, and the upper
level can be anything supported by the YALMIP interface. The available
solution methods are based on the MPEC reformulation where the handling
of complementarity constraints is forwarded to external MIP, NLP or MPEC
solvers or to an internal branch and bound that allows different solvers for
upper and lower-level problems.

It is also possible to model Bilevel optimization in the Pyomo Adversarial
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Optimization, PAO [108], a Python package extending Pyomo [36]. A (lower)
submodel is created as an object attached to the main (upper) model, then
variables and constraints are created directly in their owner models, the former
can be shared in objectives and constraints. As in the previous two AMLs, the
problem is automatically reformulated, and in Pyomo’s case can be passed
either to an NLP solver [84] or a MIP solver [80]. Additionally, PAO has
an interface to the MibS solver [98] and implements a Column Constraint
Generation, CCG [109].

The Julia [41] package BilevelOptimization.jl [110] provides a very simple
interface for Bilevel modeling in JuMP [37, 111]. Still, the interface remains
very basic. For instance, although the upper level can represent arbitrary JuMP
problems (as long as the selected solver supports them), the lower level is
constrained to QP. The package supports two MIP-based methods: big-M [80]
and the SOS1-based reformulation. The critical issue is that the lower level
is not represented by a JuMP-based syntax, preventing Julia users from fully
enjoying the modeling power provided by JuMP. Instead, lower-level problems
must be described by matrices, which can be easily manipulated to write KKT
reformulations. This is one of the salient features and the primary goal of our
proposed package, BilevelJuMP, namely, to allow representing the lower level
problem within the JuMP syntax in a single and integrated new bilevel JuMP
model.

It is important to highlight that, just like [112] and [34], JuMP also has
native support for complementarity constraints, thereby being capable of han-
dling MPEC models. However, none of them can model Bilevel Optimization
models directly.

2.1.3
Objective and Contributions

The main objective of this work is to provide a complete open-source
interface for Bilevel Optimization fully integrated into the JuMP modeling
language named BilevelJuMP.jl and available online at:

https://github.com/joaquimg/BilevelJuMP.jl

It is also readily available at the Julia Package manager, at the time of this
thesis, in version 0.5.1. Julia users can run add BilevelJuMP and have full
access to all features of the library.

Regarding similar works, [110] provided great motivation and a nice first
step to tackle bilevel models in Julia. However, it is incomplete as a mod-
eling framework due to the strong limitations associated with the modeling

https://github.com/joaquimg/BilevelJuMP.jl
DBD
PUC-Rio - Certificação Digital Nº 1812676/CA



Chapter 2. BilevelJuMP.jl:
Modeling and Solving Bilevel Optimization in Julia 35

of second-level problems, as explained before. The consideration of a generic
JuMP-based second-level model within a JuMP-integrated interface signifi-
cantly increases functionality parity with other AML’s. Notwithstanding, and
more importantly, it paves the way for new developments and computational
applications based on bilevel optimization. Because the proposed package pro-
vides a simple and integrated interface, fully embedded into the JuMP lan-
guage, new and expert users can easily prototype and test bilevel models en-
joying all open-source and commercial linear, nonlinear, and MILP solvers in-
tegrated into JuMP, depending on the model characteristics. Hence, the newly
proposed BilevelJuMP.jl can be used in teaching environments to introduce
practical aspects of bilevel modeling as well as in practical applications inher-
iting many of the functionalities and advances directed to JuMP, one of the
main packages of Julia.

Similar to other interfaces, BilevelJuMP.jl is also capable of reformulating
bilevel problems and exporting the model to existing external solvers. In
particular, many reformulations were implemented to allow practitioners to
test each method for their particular problems. Some experiments are presented
in this work to provide a first glance at the differences between existing
methods.

Researchers of the Bilevel Optimization community are similarly bene-
fited. The functionality exposed by BilevelJuMP.jl can be used as a benchmark
in terms of performance and solution quality for new algorithms. These new al-
gorithms might even be implemented in Julia with the data structures already
defined in the package. Therefore, we also provide a software contribution with
pieces of code that can be directly used in future implementations.

BilevelJuMP.jl was designed to be extensible, and the various imple-
mented methods vouch for it. As we shall discuss, the key ingredient to devel-
oping all the solution methods is to rely on MathOptInterface.jl’s API.

Advanced functionality is also part of the contributions. BilevelJuMP.jl
can represent a Conic Program, CP, in the lower-level problem and can deal
with upper-level constraints, including dual variables of lower-level problems
(see Section 2.8.1). Finally, the composability inherent in many Julia packages
allows performing reformulations that enable the user to solve even more
complex problem classes.

2.2
Conic Bilevel standard form

We will only consider optimistic bilevel problems [29], in short, the
solution of the lower level will be the one that optimizes the upper level in case
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of degeneracy. We start by describing the main notation that will be used in the
remainder of the work. z and x are vectors of decision variables, respectively,
from the upper and lower-level problems. While x is nL dimensional, z has nU

entries. [x, z] is a (nL + nU)–vector with the elements of x and z stacked. Qj,
aj

i , d
j
i , b

j
i , A

j
i , D

j
i , for j ∈ {U,L} are matrices (upper case) and vectors (lower

case) of constants. Cj
i , for j ∈ {U,L}, are sets of arbitrary finite dimensions,

which most commonly will be convex cones. mU and mL are the numbers of
vector constraints in the upper and lower problems. As in traditional bilevel
programming, z is decided in the upper level and passed to the lower level as
a parameter and x might be seen as an upper-level variable constrained to be
an optimal solution of the lower level. Hence, the optimistic bilevel problem
follows:

min
x∈RnL,z∈RnU

1
2[x, z]⊤QU [x, z] + aU

0
⊤
x+ dU

0
⊤
z + bU

0

s. t. AU
i x+DU

i z + bU
i ∈ CU

i , i = 1 . . .mU

x(z) ∈ arg min
x∈RnL

1
2[x, z]⊤QL[x, z] + aL

0
⊤
x+ dL

0
⊤
z + bL

0

s. t. AL
i x+DL

i z + bL
i ∈ CL

i , i = 1 . . .mL

As detailed by [113], describing constraints as function-set pairs is very
flexible. For simplicity, we limited ourselves to affine functions contained in
sets in the constraints of the above model. If all sets are all convex cones, we
have a standard conic form for bilevel programs.

Keeping the lower level problem as a convex conic program is especially
useful for writing KKT conditions when converting the problem into MPEC
form. Although lower-level integer variables could be tackled by specialized
solvers [97], the same goes for non-linear constraints like the ones in [103]. The
upper-level problem can be more complex, including non-linear constraints and
integer variables, because they are not affected in MPEC reformulations. For
simplicity of presentation, we do not include lower level duals in the upper
level problem, the generalization is simple and can be done as in [114].

2.2.1
KKT Reformulation of bilevel programs

Given a conic bilevel program in the standard form that we described
in the previous section, we can formulate an equivalent MPEC applying the
KKT reformulation to convert the lower level optimization problem into a set
of linear and non-linear equations.

Let us focus on the following parametric convex quadratic conic problem
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that is equivalent to the lower level problem:

min
x∈Rn

+1
2x

⊤Q1x+ x⊤Q2z + 1
2z

⊤Q3z + a0
⊤x+ b0 + d⊤

0 z

s.t. Aix+ bi +Diz ∈ Ci i = 1 . . .m
(2-1)

Note that the L superscripts were dropped for simplicity, and we split the Q
matrix in Q1, Q2, and Q3. Because z are parameters, only Q1 is required to be
a positive semi-definite matrix. In the following, we will denote the dual cone
of Ci as C∗

i .
Following [15], we can write the KKT conditions as:

– Primal Feasibility:

Aix+ bi +Diz ∈ Ci, i = 1 . . .m (2-2)

– Dual Feasibility:

yi ∈ C∗
i , i = 1 . . .m (2-3)

– Stationarity:

Q1x+Q2z + a0 −
m∑

i=1
A⊤

i yi = 0 (2-4)

– Complementary slackness:

y⊤
i (Aix+ bi +Diz) = 0, i = 1 . . .m (2-5)

Combining all the above we arrive at the MPEC form of the bilevel conic
program:

min
x,z,y1,...,y

mL

1
2[x, z]⊤QU [x, z] + aU

0
⊤
x+ dU

0
⊤
z + bU

0

s. t. AU
i x+DU

i z + bU
i ∈ CU

i , i = 1 . . .mU

AL
i x+ bL

i +DL
i z ∈ CL

i , i = 1 . . .mL

yi ∈ CL
i

∗
, i = 1 . . .mL

QL
1 x+QL

2 z + aL
0 −

m∑
i=1

AL
i

⊤
yi = 0

y⊤
i (AL

i x+ bL
i +DL

i z) = 0, i = 1 . . .mL
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Such a form is particularly useful for solving bilevel optimization problems, as
described in the previous sections. The main challenge being (2-5) constraints
which are non-linear and non-convex. Dealing with the latter requires special
solvers, tailor-made algorithms, or extra reformulation steps to reach the
standard form of some NLP or MIP solvers.

2.3
BilevelJuMP.jl

BilevelJuMP.jl is an extension of the JuMP modeling language [111, 37]
for optimization problems in the Julia language [41]. Other packages success-
fully extending JuMP and MOI include SDDP.jl [115], SumOfSquares.jl [116],
InfiniteOpt.jl [117]. BilevelJuMP.jl has two main functionalities: modeling and
solving bilevel optimization problems.

This open-source package heavily relies on MathOptInterface.jl, also
referred to as MOI, [113], another Julia package that was written to be
the new backend of JuMP which led to a complete rewrite of the latter.
MathOptInterface.jl is an intermediary layer between JuMP’s user-friendly
AML interface and the diverse and typically matrix-oriented format of solvers.
In BilevelJuMP.jl, MOI is used to store problem data from an extended JuMP
interface and reformulate bilevel optimization problems into the MPEC form
and then into a solver-compatible formulation of MPEC.

2.3.1
A Modeling Interface for Bilevel Optimization

The basic modeling interface of BilevelJuMP.jl relies on JuMP’s exten-
sible methods and macros to write and combine two optimization problems.
Not surprisingly, other methods had to be created to accommodate the needs
of bilevel optimization interfaces.

The main data structure in this software is the BilevelModel, which
is a subtype of JuMP’s AbstractModel. BilevelModel holds two other
JuMP Models to represent the upper and lower optimization problems. Also,
additional information is held to link the two problems and store additional
JuMP data and attributes used in reformulations.

Just like a regular JuMP Model, the BilevelModel will need a
solver constructor to solve an optimization problem. On the other hand, the
BilevelModel will require a solution mode which will select the technique used
in the solution process. The final pieces of the basic interface are the Lower and
Upper methods that direct JuMP macros to the proper bilevel optimization
levels.
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We will exemplify the basic interface by modeling the following simple
bilevel optimization problem from [29], Chapter 3.2, Page 25:

min
y∈R

3x+ y

s. t. x ≤ 5

y ≤ 8

y ≥ 0

x(y) ∈ arg min
x∈R

− x

s. t. x+ y ≤ 8

4x+ y ≥ 8

2x+ y ≤ 13

2x− 7y ≤ 0

The code to model, solve and query solutions are presented in Figure 2.1.

� �
using JuMP, BilevelJuMP, SCIP
model = BilevelModel(SCIP.Optimizer, mode = BilevelJuMP.SOS1Mode())
@variable(Upper(model), y)
@variable(Lower(model), x)
@objective(Upper(model), Min, 3x + y)
@constraints(Upper(model), begin

x <= 5
y <= 8
y >= 0

end)
@objective(Lower(model), Min, -x)
@constraints(Lower(model), begin

x + y <= 8
4x + y >= 8
2x + y <= 13
2x - 7y <= 0

end)
optimize!(model)
objective_value(model) # = 3 * (3.5 * 8/15) + 8/15
value(x) # = 3.5 * 8/15
value(y) # = 8/15� �

Figure 2.1: Code to solve the example of Figure 2.1

We can follow the general workflow: include packages; initialize the model
jointly with a solver, SCIP [118] in this case, and the solution mode SOS1Mode
(modes will be discussed in the following sections); add variables to the proper
levels so that they can be used by all constraints and objectives; add constraints
and objectives to the proper levels (which can be done in any order); optimize
the model; and query solutions.
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2.3.2
Solving Bilevel Optimization with Reformulations

MathOptInterface defines a unique and well-posed interface that makes
it possible to perform reformulations in problem instances to convert from
one format into others. We start from an arbitrary user formulation in
JuMP stored as an MOI model, then we can rewrite this model in an
alternate form, which will lead to an MOI model, and consequently, we
can pass the model to a solver wrapper that implements the MOI API.
The solver optimizes the model and returns the solutions, which flow back
to JuMP by applying the necessary mappings and transformations. The
simplest and most used of these transformations are bridges [113], which are
applied to individual variables, constraints, and objectives. The bridge system
automatically converts a problem into the specific form expected by the solver.

However, some transformations require looking at the model as a whole
and not only at its pieces (variables, objectives, and constraints). The first
implementation of a whole model transformation was Dualization.jl [119].
Dualization.jl’s main function receives an MOI model and writes its dual in a
second MOI model. Clearly, to perform such modification, the complete model
must be known in advance. This feature is especially useful because some
solvers only accept specific forms of mathematical programs. Hence, we can
convert between primal and dual forms and solve the converted form without
relying on the bridge system, which might increase the problem size to reach
the form required by the solver.

Dualization.jl also plays a key role in BilevelJuMP.jl’s reformulations.
Given a primal model like (2-1), where x are variables and z are parameters,
we can obtain the dual form following [120]:

max
y1,...,ym,w

−1
2w

⊤Q1w + 1
2z

⊤Q3z −
m∑

i=1
(bi +Diz)⊤yi + d⊤

0 z + b0

s.t. a0 +Q2z −
m∑

i=1
A⊤

i yi +Q1w = 0 (2-6)

yi ∈ C∗
i , i = 1 . . .m (2-7)

We observe that the Dual feasibility constraints (2-6)–(2-7) are structurally
very similar to the Dual Feasibility (2-3) and Stationarity (2-4) constraint sets
from the KKT conditions. The only difference is that, in (2-6), Q1 multiplies
an additional variable w, and in (2-4) Q1 multiplies a variable x.

BilevelJuMP.jl performs a more complicated model transformation. The
two JuMP models that described each level of the bilevel program must be
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combined in a particular way to create the corresponding MPEC. Even though
each variable belongs to one level, they are created in both but tagged with
additional data to mark their level and their corresponding variable in the
other level. However, from the user perspective, they should be accessed from
the level they were created.

The first part of the transformation is to copy the upper level into a new
model to append the other pieces of the MPEC. The second step is to add the
KKT conditions of the second level. The Primal Feasibility constraints of the
lower level are added as new constraints to the model (using the variable map
between the two original JuMP models). Then the lower level model is dualized,
considering upper-level variables as constants, and its constraints are passed to
the new model to represent Stationarity and Dual Feasibility constraints. The
additional variables, w, created in the dual problem are mapped into the upper
variables x. At this point, we only need to add complementarity constraints.

2.4
KKT Formulations

In this section, we describe the reformulation of the conic MPEC to
obtain mathematical programs that can be passed to existing solvers.

2.4.1
Complementary slackness reformulations

Starting from a convex problem, all the KKT conditions lead to con-
vex constraints except the complementary slackness constraints. The main
challenge in KKT reformulations is dealing with such non-linearity. Now we
present some possible formulations which were already implemented and tested
in BilevelJuMP.

We will assume that yi and Aix + bi + Diz are scalars since almost all
formulations rely on this assumption. The following formulations are restricted
to: Ci ∈ {R+,R−, {0}} . Without loss of generality, we will assume Ci = R+.

2.4.1.1
Special Ordered Sets of type 1

One SOS1 reformulation was presented in [121] and in [81]. In
BilevelJuMP.jl this formulation consists in replacing the complementarity con-
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straints with the following:

fi = Aix+ bi +Diz (2-8)

[yi; fi] ∈ SOS1 (2-9)

Considering this is the classic SOS1 set from [122], the SOS1 constraint
implies that a solution is feasible only if at most one of the variables in the
SOS1 set is different from zero. It is equivalent to the original formula because
one of the two scalars will have to be zero to have the product equal to zero.

Many solvers can handle this kind of constraint, e.g., Cbc, CPLEX,
Gurobi, SCIP, Xpress, which makes this formulation particularly useful for
practitioners.

2.4.1.2
Indicator constraints

Indicator constraints [123] and SOS1 are deeply related. A typical indi-
cator constraint is defined by:

x = 0 =⇒ Ay ≤ b (2-10)

This means that the constraint Ay ≤ b is only considered if x = 0, where x is
a binary variable. Analogously, another indicator constraint could depend on
x = 1. Hence, one possible formulation for the complementarity slackness with
indicator constraints is:

f = 0 =⇒ Aix+ bi +Diz = 0 (2-11)

f = 1 =⇒ yi = 0 (2-12)

f ∈ {0, 1} (2-13)

Many solvers are also capable of handling this kind of constraint which
also makes this formulation very useful. As a final note on this formulation,
we note that a solver might not support Indicator Constraints for both f = 0
and f = 1, in this case, we simply need one additional variable g and the
constraint: f + g = 1.

2.4.1.3
Fortuny-Amat and McCarl
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This formulation is commonly known by the name of the authors of [80]
and is frequently used in practice. In very few words, it is an application of
the big-M method:

Aix+ bi +Diz ≤Mpf (2-14)

yi ≤Md(1− f) (2-15)

f ∈ {0, 1} (2-16)

In such formulation, Mp and Md are large numbers. We have assumed that
both Aix + bi + Diz and yi are positive, thus, for each value of f one of the
elements in the complementarity pair is forced to zero.

The main drawback of this method is that the values of Mp and Md must
be large enough so that the optimal solution of the problem is not excluded.
One can usually develop bounds on primal variables because the variable might
be bounded due to the problem definition. However, finding reasonable bounds
for dual variables might be much harder on specific applications. The work by
[124] shows that commonly used heuristics to select the big-Ms can fail. [125]
go further and demonstrate that verifying big-Ms is at least as hard as solving
the Bilevel Problem itself.

When good bounds are available, the Fourtuny-Amat and McCarl for-
mulation is very efficient in practice [121]. Moreover, no extra constraints are
required from solvers. Therefore, less complete MIP solvers like GLPK can be
used to solve this kind of reformulation. On the other hand, the difficulty of
computing bounds makes the SOS1 and Indicator formulations very useful for
experimentation.

2.4.1.4
Products

This is not a reformulation because, in this case, the actual complemen-
tarity constraint in its product form is added to the optimization problem:

y⊤
i (Aix+ bi +Diz) = 0 (2-17)

NLP solvers frequently use this form to seek local optimal solutions. Although
no guarantees of global optimality are provided when using this method, it is
useful the get initial solutions to be used as bounds or even for cases where
MIP solving is not practical. An additional weakness of this method is that
(2-17) does not satisfy constraint qualification [83, 84, 82] and is regularised
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as:

y⊤
i (Aix+ bi +Diz) ≤ t (2-18)

where t is a small number.
In theory, one could reformulate all the products with binary expansion

techniques such as the one in [126] and use MIP solvers jointly with NLP
solvers to reach solutions close to globally optimal solutions. In practice, binary
expansions also require bounds on the variables that are multiplied. This adds
complications to the solution method because these cannot be added as regular
constraints at the lower level; otherwise, they would be dualized, leading to
more unbounded variables on both sides.

The binary expansion technique was implemented in QuadraticTo-
Binary.jl [127], which can be used as an intermediary layer between
BilevelJuMP.jl (or JuMP) and the selected solver—allowing any MIP solver
with an MOI interface to solve approximations of quadratically constrained
problems.

This formulation easily extends to vector sets. Hence, conic bilevel
problems will require this formulation in BilevelJuMP.

2.4.1.5
Complements

Some solvers are able to handle explicit complement constraints like
Knitro [85], filterMPEC [86, 82], NLPEC [87]. These solvers receive the
constraints as special structures: pairs of variables or variable-expression pairs.
Internally, the solver will employ their own reformulations.

yi ⊥ Aix+ bi +Diz (2-19)

2.4.1.6
Mixed mode

Usually, practitioners select one single formulation and apply it to
all complementarity constraints in the problem, but this is not a technical
requirement. Consequently, one could combine formulations and select which
formulation will be used for each pair. For instance, if one has good bounds for
a specific pair, then just use Fortuny-Amat and McCarl for that constraint,
while the other constraints would be reformulated with SOS1, for instance.
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Alternatively, even a conic bilevel with multiple linear constraints could be
reformulated with SOS1 for all linear constraints and product mode (and
binary expansions) for the conic constraints. We present an application of
this method in Section 2.8.2.

2.4.2
Primal Dual Equality reformulation

This formulation takes advantage of the fact that, under strong duality,
the complementarity constraints are equivalent to enforcing that the primal
and dual objective values are the same for a solution that is both primal and
dual feasible. Therefore, the complementarity constraints are replaced by:

1
2x

⊤P1x+ x⊤P2z + a⊤
0 x = −1

2w
⊤P1w −

m∑
i=1

(bi +Diz)⊤yi (2-20)

Where the identical terms were already eliminated. This is also a non-convex
quadratic constraint, even if the problem is linear due to z and y products.

One exciting feature of this formulation is that all the quadratic terms
are concentrated in a single constraint, and the number of variable products
might be much smaller than the number of complementarity constraints.
Consequently, binary expansions were shown to be helpful in replacing the
quadratic terms and achieving approximate global optimal solutions in [128,
129].

2.4.3
Comparison of methods

We present a brief comparison between the solution methods. Table 2.1
presents the method name in BilevelJuMP, the section in which it is described,
solver requirements and additional comments.

Method Name Sec. Solver requirement Comments
SOS1Mode 2.4.1.1 MIP solver with SOS of type 1 No additional information. Only linear constraints.
IndicatorMode 2.4.1.2 MIP solver with Indicator Constraints No additional information. Only linear constraints.
FortunyAmatMcCarlMode 2.4.1.3 MIP solver Require non-trivial big-M. Only linear constraints.
ProductMode 2.4.1.4 Non-convex quadratic constraints Works with conic constraints. Require regularization.
ComplementMode 2.4.1.5 Complementarity constraint Few solvers supporting such constraints.
MixedMode 2.4.1.6 Requirements of selected methods Pros and cons from selected methods.
StrongDualityMode 2.4.2 Non-convex quadratic constraints Works with conic constraints.

Table 2.1: Reformulation methods

2.5
Example

In this section, we describe a slightly more interesting example of a bilevel
program. The main goal is to start from a non-trivial problem, model it in
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BilevelJuMP, and solve it with multiple methods to have a glimpse of the
multitude of applications of the package.

As previously mentioned, hyperparameter tuning with bilevel optimiza-
tion is a recent trend in the intersection of the Machine Learning and Op-
timization communities [5, 130, 131]. Although most hyperparameter tuning
methods based on bilevel optimization are usually heuristic with special con-
siderations to the problem in question, this is a good case to describe the
functionality of the package due to the simplicity of the model and because
small enough instances can be solved by standard methods implemented in
this package.

We have selected hyperparameter tuning in support vector regressions
(SVR). The example will follow the one from [132], though with some simplifi-
cations. Given a set of features J and two data sets O and I, with out-of-sample
and in-sample data, represented by the points labeled by i, (yi, {xij}j∈J), we
define the following model:

min
C≥0,ε≥0,ξU ≥0,w

∑
i∈O

ξU
i

s. t. ξU
i ≥ +yi −

∑
j

wjxij, i ∈ O

ξU
i ≥ −yi +

∑
j

wjxij, i ∈ O

w(C, ε) ∈ arg min
ξL≥0,w

||w||22 + C
∑
i∈I

ξL
i

s. t. ξL
i + ε ≥ +yi −

∑
j∈J

wjxij, i ∈ I

ξL
i + ε ≥ −yi +

∑
j∈J

wjxij, i ∈ I

The lower model is the SVR problem formulation. Therefore it is responsible
for obtaining the best possible support vectors w given the problem data and
the hyperparameters C and ε. The hyperparameters are variables selected by
the upper level so that the w optimized by the lower level has the smallest
out-of-sample error. The variables ξU and ξL denote the absolute value loss in
the upper and lower models, respectively. The upper level is a linear program,
while the lower level is quadratic. In Figure 2.2 we present BilevelJuMP.jl code
to model the hyperparameter tuning of SVR described above. Thanks to the
JuMP syntax, the code greatly resembles the abstract model, simplifying the
writing and documenting of the code.

That same code was used to perform a series of comparisons between
solvers. We started by creating instances with a different number of features
and observations (dataset size). We randomly created the matrix x with a
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� �
using JuMP, BilevelJuMP
# sample data
Features = 2
Samples = 10
J = 1:Features
I = 1:div(Samples, 2)
O = (div(Samples, 2)+1):Samples
x = 2 * (rand(Samples, Features) .- 0.5)
w_real = ones(Features)
y = x * w_real .+ 0.1 * 2 * (rand(Samples) .- 0.5)
# model building
model = BilevelModel()
@variable(Upper(model), C >= 0)
@variable(Upper(model), eps >= 0)
@variable(Upper(model), xi_U[i=O] >= 0)
@variable(Lower(model), w[j=J])
@variable(Lower(model), xi_L[i=I] >= 0)
@objective(Upper(model),

Min, sum(xi_U[i] for i in O))
@constraints(Upper(model), begin

[i in O], xi_U[i] >= + y[i] - sum(w[j]*x[i,j] for j in J)
[i in O], xi_U[i] >= - y[i] + sum(w[j]*x[i,j] for j in J)

end)
@objective(Lower(model),

Min, sum(w[j]ˆ2 for j in J) + C * sum(xi_L[i] for i in I))
@constraints(Lower(model), begin

[i in I], xi_L[i] + eps >= + y[i] - sum(w[j]*x[i,j] for j in J)
[i in I], xi_L[i] + eps >= - y[i] + sum(w[j]*x[i,j] for j in J)

end)� �
Figure 2.2: Code to model SVR hyper-parameter tuning

uniform distribution in [−1,+1], then we created the real w as a vector of
ones with appropriate dimension. Next, we defined y = xw+ ϵ, where ϵ follows
a uniform distribution in [−0.1,+0.1]. Half of the dataset was considered in-
sample data, while the other half was considered out-of-sample data. It is not
our intention to be fully realistic here, our goal is to provide a didactic example.

We created instances with 10, 100 and 1000 samples. For all these sample
sizes we created samples with 1, 2 and 5 features. For the datasets with 100
samples, we also created datasets with 10, 20 and 50 features.

Finally, we optimized the bilevel problem for each data set with multiple
reformulations and with multiple solvers. The only solver attribute we set
was a time limit of 600 seconds (10 minutes) and left all other attributes as
default, which might differ considerably from one solver to the other. Again,
our primary goal is not a detailed and rigorous comparison of solvers but
to show the software’s functionality in a usage example, as practitioners and
researchers might want to solve the same problem with multiple methods and
select the one that best fits their needs.

We present the results in the following tables. We used Julia 1.6.2,
CPLEX 22.1 [133], Gurobi 9.5 [42], HiGHS 1.2 [134], Ipopt 3.14 [135], Knitro
13.0 [85], SCIP 8.0 [118], Xpress 8.13 [43]. All the required code is in the
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benchmarks folder of the git repository, including exact package versions (see
the manifest.toml file).

All tables have a similar format. The first column describes the instance,
the first number being the sample size and the second the number of features.
Then we have three columns for each solver, the first, Obj, presents the upper-
level objective value returned by the solver (typically the best incumbent
solution), the second contains the Gap in percent (%), Ipopt and KNITRO
will not have gaps as they are NLP solvers, if no gap was reported the entry
will be blank (with a “−”), the third is Time in seconds, if the time reaches
600 the entry will be blank (with a “−”).

Table 2.2 presents results for SOS1Mode and IndicatorMode. Table
2.3 presents results for FortunyAmatMcCarlMode, with big-Ms set to
100, StrongDualityMode and ProductMode, the latter two with binary
expansions, so the resulting problem is a MIP, where the variable bounds were
set to +/−100. Finally, Table 2.4 presents the solutions of both ProductMode
and StrongDualityMode for Non-Linear Programming solvers and Gurobi
with its NonConvex mode activated.

We can draw some conclusions from the tables. We note that SOS1Mode
and IndicatorMode perform well in smaller instances, with a slight ad-
vantage for SOS1Mode. Interestingly, CPLEX’s solution for 1000/01 with
IndicatorMode slightly disagrees with the solution from all solvers using
the SOS1Mode. FortunyAmatMcCarlMode and StrongDualityMode

seem very amenable to MIP solvers, with Gurobi closing the gap within
the given 10 minutes for all but one instance in the latter mode. However,
we must be careful since we selected arbitrary bounds for those methods
and StrongDualityMode also relies on binary expansion approximations,
which led solvers to a solution that disagrees with the other methods on
the 10/05 instance. On the other hand, ProductMode is the worst strat-
egy for MIP solvers in these instances. For NLP solvers, both ProductMode

and StrongDualityMode return objective values that are close to the
ones found by MIP solvers, but in this case there is a slight advantage for
ProductMode. Finally, Gurobi NonConvex seems to work much better with
StrongDualityMode, claiming very good results in the instances with 1000
samples that agree with some of the other presented objective values.

The results are particular to a toy problem. However, the tables demon-
strate that the software can interface with multiple solvers and consider mul-
tiple methods. Moreover, there is value in experimenting with multiple solvers
and methods implemented in BilevelJuMP.
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CPLEX Gurobi SCIP Xpress
Inst Obj Gap Time Obj Gap Time Obj Gap Time Obj Gap Time

10/01 0.30 0 0 0.30 0 0 0.30 0 0 0.30 0 0
10/02 0.22 0 0 0.22 0 0 0.22 0 0 0.22 0 0

S
O
S
1
M
o
d
e 10/05 0.09 0 0 0.09 0 0 0.09 0 0 0.09 0 0

100/01 2.42 0 0 2.42 0 0 2.42 0 0 2.42 0 0
100/02 2.40 4 - 2.40 4 - 2.40 4 - 2.40 4 -
100/05 2.30 6 - 2.30 6 - 2.31 6 - 54.87 - -
100/10 8.54 392 - 79.59 - - 79.59 - - 79.59 - -
100/20 102.79 - - 8.21 457 - 102.79 - - 96.89 - -
100/50 23.35 307 - 23.35 299 - 23.35 - - 23.35 350 -

1000/01 25.02 0 - 28.63 14 - 25.02 0 - 25.02 0 -
1000/02 323.30 - - 323.30 - - 323.30 - - 323.30 - -
1000/05 533.37 - - 533.37 - - 533.37 - - 533.37 - -

10/01 0.30 0 0 0.30 0 0 0.30 0 0 0.30 0 0
10/02 0.22 0 0 0.22 0 0 0.22 0 0 0.22 0 0

I
n
d
i
c
a
t
o
r
M
o
d
e 10/05 0.09 0 0 0.09 0 0 0.09 0 0 0.09 0 0

100/01 2.42 0 0 2.42 0 0 2.42 0 2 2.42 0 2
100/02 2.40 4 - 2.40 4 - 9.08 294 - 2.42 5 -
100/05 2.30 6 - 2.30 6 - 39.08 - - 2.31 6 -
100/10 79.59 - - 79.59 - - 79.59 - - 79.59 - -
100/20 102.79 - - - - - 102.79 - - 102.79 - -
100/50 23.35 - - 23.35 - - 23.35 - - 23.35 576 -

1000/01 25.06 0 - - - - 77.45 209 - 195.11 680 -
1000/02 323.30 - - - - - 323.30 - - - - -
1000/05 533.37 - - 533.37 - - 533.37 - - - - -

Table 2.2: Mixed Integer Programming solvers with SOS1Mode and
IndicatorMode, Time in seconds (s), Gap in percent (%).
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CPLEX Gurobi HiGHS SCIP Xpress
Inst Obj Gap Time Obj Gap Time Obj Gap Time Obj Gap Time Obj Gap Time

10/01 0.30 0 0 0.30 0 0 0.30 0 0 0.30 0 0 0.30 0 0
10/02 0.22 0 0 0.22 0 0 0.22 0 0 0.22 0 0 0.22 0 0

F
o
r
t
u
n
y
A
m
a
t
M
c
C
a
r
l
M
o
d
e

10/05 0.09 0 0 0.09 0 0 0.09 0 0 0.09 0 0 0.09 0 0
100/01 2.42 0 0 2.42 0 0 2.42 0 0 2.42 0 1 2.42 0 0
100/02 2.40 4 - 2.40 4 - 2.40 4 - 2.43 5 - 2.43 5 -
100/05 2.30 6 - 2.29 5 - 54.87 - - 39.08 - - 2.31 6 -
100/10 79.59 - - 2.33 34 - 79.59 - - 79.59 - - 79.59 - -
100/20 22.11 - - 22.17 - - 102.79 - - 102.79 - - - - -
100/50 23.35 355 - 23.35 330 - 23.35 - - 23.35 952 - 23.35 736 -

1000/01 25.02 0 - 25.02 0 - 25.02 0 - 70.13 180 - 25.02 0 -
1000/02 24.46 3 - 23.74 0 12 323.30 - - 323.30 - - 23.75 0 -
1000/05 533.37 - - 533.37 - - 533.37 - - 533.37 - - 533.37 - -

10/01 0.30 0 344 0.30 0 17 0.30 0 269 0.30 0 83 0.30 0 447
10/02 1.82 739 - 0.22 0 - 3.12 - - 0.33 0 495 0.30 38 -

P
r
o
d
u
c
t
M
o
d
e 10/05 0.53 - - 7.22 - - 8.72 - - 0.67 - - 0.60 - -

100/01 18.08 647 - 14.37 494 - 23.28 0 52 21.87 803 - 20.74 0 55
100/02 27.06 - - - - - - - - - - - - - -
100/05 - - - 48.56 - - - - - - - - - - -
100/10 - - - 75.06 - - - - - - - - 78.62 - -
100/20 - - - 99.82 - - - - - - - - 101.51 - -
100/50 247784.27 - - 183.62 - - - - - - - - - - -

1000/01 45.15 80 - - - - - - - 58.77 135 - 147.68 490 -
1000/02 - - - - - - - - - - - - 165.04 595 -
1000/05 - - - - - - - - - - - - - - -

10/01 0.30 0 512 0.30 0 - 0.30 0 - 0.30 0 - 0.30 0 -
10/02 0.22 0 0 0.22 0 0 0.22 0 7 0.22 0 36 0.22 0 52

S
t
r
o
n
g
D
u
a
l
i
t
y
M
o
d
e 10/05 0.00 0 2 0.00 0 3 0.00 0 165 0.00 0 37 0.00 - 4

100/01 2.42 0 2 2.42 0 1 2.42 0 2 - - - 2.42 0 0
100/02 2.30 0 7 2.30 0 10 2.30 0 63 2.36 2 - - - -
100/05 2.16 0 139 2.16 0 66 41.77 - - - - - 2.18 0 -
100/10 1.73 0 269 1.73 0 34 75.84 - - 78.61 - - - - -
100/20 90.35 - - 1.45 0 269 - - - - - - 1.57 8 -
100/50 176.21 - - 160.70 - - - - - - - - - - -

1000/01 25.01 0 153 25.01 0 22 25.01 0 32 25.01 0 20 25.01 0 10
1000/02 23.74 0 39 23.74 0 23 23.75 0 - - - - 23.74 0 20
1000/05 529.71 - - 24.43 0 543 408.46 - - - - - 24.43 0 482

Table 2.3: Mixed Integer Programming solvers with ProductMode,
FortunyAmatMcCarlMode, and StrongDualityMode, Time in seconds
(s), Gap in percent (%).
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Gurobi NonConvex Ipopt Knitro
Inst Obj Gap Time Obj Gap Time Obj Gap Time

10/01 0.31 2 - 0.32 - 1 0.32 - 0
10/02 0.22 3 - 0.22 - 1 0.22 - 0

P
r
o
d
u
c
t
M
o
d
e 10/05 0.67 - - 0.09 - 0 0.09 - 0

100/01 2.42 0 6 2.43 - 18 2.46 - 0
100/02 2.71 17 - 2.41 - 12 2.43 - 0
100/05 54.87 - - 2.47 - 24 2.54 - 0
100/10 79.59 - - 2.64 - 12 2.35 - 0
100/20 102.79 - - 3.43 - 11 3.51 - 0
100/50 185.45 - - 19.46 - 22 19.46 - 0

1000/01 25.21 0 - 25.13 - 272 25.10 - 1
1000/02 323.30 - - 24.08 - 148 23.84 - 2
1000/05 533.37 - - 25.70 - 121 24.89 - 4

10/01 0.30 1 - 0.32 - 0 0.33 - 0
10/02 0.25 17 - 0.22 - 0 0.22 - 0

S
t
r
o
n
g
D
u
a
l
i
t
y
M
o
d
e 10/05 0.13 - - 0.09 - 0 0.09 - 0

100/01 2.42 0 0 2.44 - 2 2.43 - 0
100/02 2.41 4 - 2.44 - 2 2.53 - 0
100/05 2.33 7 - 2.50 - 0 2.32 - 0
100/10 2.41 39 - 2.21 - 1 2.08 - 0
100/20 3.55 145 - 3.43 - 8 2.90 - 0
100/50 64.20 - - 23.34 - 1 185.45 - 0

1000/01 25.03 0 - 54.89 - 3 25.08 - 3
1000/02 23.80 0 - 71.32 - 9 23.78 - 6
1000/05 24.86 1 - 29.52 - 175 24.75 - 4

Table 2.4: Gurobi NonConvex and NLP solvers with ProductMode and
StrongDualityMode, Time in seconds (s), Gap in percent (%).
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2.6
Package Comparison

A comparison between BilevelJuMP.jl and four other bilevel optimization
modeling interfaces that include solution methods is presented in Table 2.5. We
include BilevelOptimization.jl as it was the key motivation for BilevelJuMP.jl;
PAO, as the new bilevel interface of pyomo; GAMS that relies on EMP; and
YALMIP which motivated the development of Dualization.jl.

In each table line, we briefly depict the answer to each of the following
questions:

1. Which programming language does a user have to write the models?

2. What is the licensing scheme? (MIT is the most permissive among the
ones shown).

3. Does the modeling interface support MIP solver-based methods, like
SOS1 and big-M?

4. Does the modeling interface support NLP solver-based methods, like
products?

5. Does the modeling interface support MPEC solvers that accept explicit
complementarity constraints?

6. Can the user access dual variables of the lower-level problem and use
them explicitly while modeling the upper-level problem?

7. Which problem classes are accepted in the lower-level problem?

8. Which problem classes are accepted in the upper-level problem?

The two latter questions used the following code: CP is Conic Program-
ming, QP is linear programming with optional quadratic objective, NLP stands
for Non-Linear Programming, VI represents Variational Inequalities, and Int
is Integer Programming. Although one can model problems of given classes,
specific solvers will be required to handle the resulting formulations. Finally,
we note that all classes might not be supported simultaneously by all the in-
terfaces, BilevelJuMP.jl supports all the described classes in the same model.
Finally, it is worth mentioning that the possibility of considering bilevel models
in which lower-level primal and dual variables are present in the first-level prob-
lem significantly enlarges the spectrum of practical applications that can be
covered with the package. We marked YALMIP as ready to handle lower level
duals because this can be achieved by explicitly calling their “kkt” function
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on the lower level data and appending to the primal problem. For instance,
strategic bidding as well as market-power assessments in electricity markets
highly depend on bilevel models with such dependencies [136].

Name BilevelJuMP.jl BilevelOptimization.jl PAO/Pyomo GAMS YALMIP
Language Julia Julia Python GAMS MATLAB
License MIT MIT BSD Commercial YALMIP
MIP solvers Yes Yes Yes No Yes
NLP solvers Yes No Yes Yes Yes
MPEC solvers Yes No No Yes Yes
DualVar Yes No No Yes Yes
Lower Level CP/QP QP (matrix form) QP/Int QP/NLP/VI QP
Upper Level CP/QP/NLP/Int CP/QP/NLP/Int QP/Int QP/NLP/Int CP/QP/NLP/Int

Table 2.5: Modeling interfaces for bilevel optimization

2.7
Conclusion

We presented BilevelJuMP, an open-source Julia library for Bilevel
Optimization that allows the user to model a wide range of bilevel optimization
problems very easily. Moreover, the user has access to multiple reformulation
techniques that can be considered to handle different problems better. More
specifically, BilevelJuMP.jl allows modeling very general problems at the upper
level (all JuMP supported formulations, such as non-linear, conic, mixed
integer constraints) and conic problems in the lower level. Additionally, it
implements multiple MPEC-based reformulation techniques with MIP or NLP
as solution algorithms. This broad and flexible infrastructure of models and
methods all built in a single open-source package for JuMP allows practitioners
to use BilevelJuMP.jl to quickly deploy and run experiments using state-of-
the-art solvers and methods. It can be used by students introduced to the
realm of bilevel optimization due to its easy-to-use and flexible structures,
researchers and developers that can quickly test (or benchmark) new methods
and models, and also develop new applications and packages, as well as by
industry practitioners, who may not be familiar with bilevel solution strategies,
but can rely on the package to address specific bilevel problems composing
parts of real-world applications.

BilevelJuMP.jl joins a group of JuMP and MOI extensions that were
made possible thanks to the good design of the latter two.

Just like JuMP and MOI, BilevelJuMP.jl is under active development,
and more features are planned to be included. The library has gotten great
interest from other contributors that are currently working towards new fea-
tures, including support for integer variables in the lower level with the solver
MibS [97]. Further developments include: implementing other techniques such
as valid inequalities [137], column-constraint generation based techniques [109];
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developing a file format for bilevel optimization based on MathOptFormat; in-
tegrating other solvers such as the one from [99].
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2.8
Additional formulations and code

2.8.1
Lower-level duals

This modeling feature enables the implementation of workflows where one
(or more) of the upper-level variables is the dual of a lower-level constraint.
In particular, in the energy sector, it is common to model energy prices as
the dual variable associated with the energy demand equilibrium constraint.
One example of an application that uses this feature is [136], which focuses
on strategic bidding in auction-based energy markets. A small and simplified
example of the modeled problem would be the model:

max
λ,qS

λ · gS (2-21)

s. t. 0 ≤ qS ≤ 100 (2-22)

(gS, λ) ∈ arg min
gS ,g1,g2,gD

50gR1 + 100gR2 + 1000gD (2-23)

s. t. gS ≤ qS (2-24)

0 ≤ gS ≤ 100 (2-25)

0 ≤ g1 ≤ 40 (2-26)

0 ≤ g2 ≤ 40 (2-27)

0 ≤ gD ≤ 100 (2-28)

gS + g1 + g2 + gD = 100 : λ (2-29)

Where λ is the dual of the load balance constraint (2-29), gS, g1, g2 represent
the generation of the strategic bidder and from two other (non-strategic)
plants. gD represents the deficit in generation. Finally, qS is the quantity bid
optimized by the strategic generator.

BilevelJuMP.jl allows users to implement similar models using the func-
tion DualOf that binds a new variable in the upper level to an existing con-
straint in the lower level. The model can be written as:

� �
model = BilevelModel()

@variable(Upper(model), 0 <= qS <= 100)

@variable(Lower(model), 0 <= gS <= 100)

@variable(Lower(model), 0 <= gR1 <= 40)

@variable(Lower(model), 0 <= gR2 <= 40)

@variable(Lower(model), 0 <= gD <= 100)

@objective(Lower(model), Min, 50gR1 + 100gR2 + 1000gD)
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@constraint(Lower(model), gS <= qS)

@constraint(Lower(model), demand_equilibrium, gS + gR1 + gR2 + gD == 100)

@variable(Upper(model), lambda, DualOf(demand_equilibrium))

@objective(Upper(model), Max, lambda*gS)� �
2.8.1.1
NLP solution

This model can be solved by selecting a reformulation and a solver. Here
we select Strong-Duality reformulation, the Ipopt solver and call optimize to
perform the reformulation and solve it.

� �
BilevelJuMP.set_mode(model, BilevelJuMP.StrongDualityMode())

set_optimizer(model, Ipopt.Optimizer)

optimize!(model)� �
2.8.1.2
MIP solution

It is also possible to solve such a problem by using a MIP formulation.
The main issue is the product of variables in the upper level objective. However,
this can be easily handled by using the aforementioned QuadraticToBinary
package for automatic binary expansions. Because binary expansions require
bounds on variables, we change the following line:

� �
@variable(Upper(model), 0 <= lambda <= 1000, DualOf(demand_equilibrium))� �

Then, as before, we set a solver (now SCIP with the
QuadraticToBinary wrapper) and a solution method (now Fortuny-Amat
and McCarl):

� �
set_optimizer(model,

()->QuadraticToBinary.Optimizer{Float64}(SCIP.Optimizer()))

BilevelJuMP.set_mode(model,

BilevelJuMP.FortunyAmatMcCarlMode(dual_big_M = 100))

optimize!(model)� �
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2.8.2
Conic Bilevel and Mixed Mode

Here we present a simple bilevel program with a conic lower level model
described in example 3.3 from [138].

max
x∈R

x+ 3y1 (2-30)

s. t. 2 ≤ x ≤ 6 (2-31)

y(x) ∈ arg min
y∈R3

−y1 (2-32)

s. t. x+ y1 ≤ 8 (2-33)

x+ 4y1 ≥ 8 (2-34)

x+ 2y1 ≤ 12 (2-35)

y ∈ SOC3 (2-36)

In this problem, most of the constraints are regular linear constraints,
while the last one, (2-36), is a second order cone constraint. Such constraint
ensures that the vector y belongs to a second order cone of dimension 3, that
is: y1 ≥

√
y2

2 + y2
3. This problem can be encoded using regular JuMP syntax

for conic programs:

� �
model = BilevelModel()

@variable(Upper(model), x)

@variable(Lower(model), y[i=1:3])

@objective(Upper(model), Min, x + 3y[1])

@constraint(Upper(model), x >= 2)

@constraint(Upper(model), x <= 6)

@objective(Lower(model), Min, - y[1])

@constraint(Lower(model), con1, x + y[1] <= 8)

@constraint(Lower(model), con2, x + 4y[1] >= 8)

@constraint(Lower(model), con3, x + 2y[1] <= 12)

@constraint(Lower(model), con4, y in SecondOrderCone())� �
2.8.2.1
NLP solution and start values

We can set, for instance, the product reformulation and select Ipopt as a
solver. As Ipopt does not have native support for second order cones, we use
the non-default MOI bridge SOCtoNonConvexQuad to convert second order
cones into quadratic constraints.

� �
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BilevelJuMP.set_mode(model,BilevelJuMP.ProductMode(1e-5))

set_optimizer(model,

()->MOI.Bridges.Constraint.SOCtoNonConvexQuad{Float64}(Ipopt.Optimizer()))

optimize!(model)� �
This problem is very simple, but more complex models might require

more information, such as starting points that can be passed at the variable
creation with standard JuMP syntax, for instance:

� �
@variable(Upper(model), x, start = 6)� �

The user could also use the alternative JuMP syntax:

� �
set_start_value(x, 6)

set_dual_start_value(con2, 0)� �
2.8.2.2
MIP solution and mixed mode

Alternatively, we could have used a Mixed Integer Second Order Cone
Program (MISOCP) solver together with binary expansions. Complementarity
of conic constraints is more difficult to handle because they require a sum of
products that cannot be reformulated with other methods. Therefore, we rely
on product reformulation for conic constraints. However, we can use other
reformulations like indicator constraints for the non-conic constraints. Mixing
the two of them can be done with Mixed Mode from Section 2.4.1.6.

The following code describes how to solve the problem with a MISOCP
based solver.

� �
set_optimizer(model,

()->QuadraticToBinary.Optimizer{Float64}(Xpress.Optimizer(),lb=-10,ub=10))

BilevelJuMP.set_mode(model,

BilevelJuMP.MixedMode(default = BilevelJuMP.IndicatorMode()))

BilevelJuMP.set_mode(con4, BilevelJuMP.ProductMode(1e-5))

optimize!(model)� �
We set the reformulation method as Mixed Mode and select Indicator

constraints to be the default for the case in which we do not explicitly specify
the reformulation. Then we set the product mode for the second order cone
reformulation.
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As described in Section 2.8.1, binary expansions require bounded vari-
ables, hence the QuadraticToBinary meta-solver accepts fallback to upper
and lower bounds (ub and lb), used for variables with no explicit bounds.
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3
Application-Driven Learning:
A Closed-Loop Prediction and Optimization Approach
Applied to Dynamic Reserves and Demand Forecasting

Forecasting and decision-making are generally modeled as two sequential
steps with no feedback, following an open-loop approach. In this paper, we
present application-driven learning, a new closed-loop framework in which
the processes of forecasting and decision-making are merged and co-optimized
through a bilevel optimization problem. We present our methodology in a
general format and prove that the solution converges to the best estimator in
terms of the expected cost of the selected application. Then, we propose two
solution methods: an exact method based on the KKT conditions of the second-
level problem and a scalable heuristic approach suitable for decomposition
methods. The proposed methodology is applied to the relevant problem of
defining dynamic reserve requirements and conditional load forecasts, offering
an alternative approach to current ad hoc procedures implemented in industry
practices. We benchmark our methodology against the standard sequential
least-squares forecast and dispatch planning process. We apply the proposed
methodology to an illustrative system and to a wide range of instances, from
dozens of buses to large-scale realistic systems with thousands of buses. Our
results show that the proposed methodology is scalable and yields consistently
better performance than the standard open-loop approach.

3.1
Introduction

The most common approach to make decisions under uncertainty involves
three steps. In the first step, one develops a forecast for all uncertainties
that affect the decision-making problem based on all information available.
In the second step, an action based on the forecast is selected. Finally, in the
third step, one implements corrective actions after uncertainties are realized.
This three-step procedure constitutes an open-loop forecast-decision process
in which the outcomes of the decisions are not considered in the forecasting
framework.

In the electricity sector, it is common for system operators to use an open-
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loop forecast-decision approach. First, loads are forecast based on standard
statistical techniques, such as least squares (LS), and reserve requirements
are defined by simple rules, based on quantiles, extreme values and standard
deviation of forecast errors according to specified reliability standards [139].
Then, a decision is made to allocate generation resources following an energy
and reserve scheduling program [53, 54]. In real-time, reserves are deployed to
ensure that power is balanced at every node, compensating for forecast errors.

From the academic perspective, it has been demonstrated that stochastic
programming models yield better results than deterministic ones when making
decisions under uncertainty because the former takes distributions into consid-
eration. These models provide better results in terms of cost, reliability, and
market efficiency compared to deterministic approaches [140]. Nevertheless, in
practical applications, two issues arise: proper modeling of distributions is chal-
lenging and tractability imposes small sample sizes for techniques like sample
average approximations (SAA). A consequence of this tractability issue is that
SAA solutions become sample dependent [141, 142], thereby compromising
market transparency and preventing stakeholders’ acceptance [143]. There-
fore, most system operators worldwide still rely on deterministic short-term
scheduling (economic dispatch or unit commitment, UC) models with exoge-
nous forecasts for loads and reserve requirements [53, 144]. Within this context,
one alternative to improve the performance of deterministic scheduling tools is
to forecast load and reserve requirements with the goal of minimizing energy
and reserve scheduling costs.

There is empirical evidence that system operators rely on ad hoc or
out-of-market actions—and not just on reserves— to deal with uncertainty
in operations. According to the 2019 Annual Report on Market Issues and
Performance of the California ISO [145], “...operators regularly take significant
out-of-market actions to address the net load uncertainty over a longer multi-
hour time horizon (e.g., 2 or 3 hours). These actions include routine upward
biasing of the hour-ahead and 15-minute load forecast, and exceptional dis-
patches to commit and begin to ramp up additional gas-fired units in advance
of the evening ramping hours." Additionally, reserve requirements are, in prac-
tice, empirically defined according to further ad hoc off-line rules based on
off-line analysis [139, 144]. These ad hoc procedures lack technical formalism
and transparency to minimize operating and reliability costs, which prevents
agents from internalizing the forecasts in their bids. On the other hand, a scien-
tifically grounded method as the one described here would allow incorporating
biased forecasts in bids. Consequently, this challenging real-world application
requires further research observing the practical issues that need to be ad-
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dressed to improve the current state-of-the-art of industry practices.
For years, decision-making and forecasting have been treated as two

completely separate processes [146]. Many communities, such as Statistics and
Operations Research, have studied these problems and developed multiple tools
combining probability and optimization. The machine learning community,
which combines many ideas from optimization and probability, has also been
tackling such tasks and has proposed methods to treat them jointly [59].

Classical forecasting methods do not take the underlying application
of the forecast into account. Consequently, hypotheses such as prediction
error symmetry in least squares (LS) might not be the best fit for problems
with asymmetric outcomes. By acknowledging the asymmetry in particular
problems, researchers have attempted to capture it empirically; however,
such an approach does not take the application into account directly. Some
existing methods do capture asymmetry, such as Quantile Regression [147].
The interest in exploring asymmetric loss functions is not new. For instance,
[148] and [149] acknowledge that biased estimators can perform even better
than those that make accurate predictions of statistical properties of the
stochastic variables. The author exemplifies that an overestimation is not as
bad as an underestimation for the case of dam construction and attributes a
second example about the asymmetry on real estate assessment to [150].

Within this context, two possible avenues of research are opened to
achieve better results: i) a focus on improving the decision-making model (pre-
scriptive framework), which assumes we can change it to consider embedded
co-optimized forecasts [146]; or ii) a focus on improving the forecasting model
(predictive framework), which assumes we can not change the decision-making
process (in our application, defined by system operators’ dispatch models), but
we can change the forecasts to incorporate, in a closed-loop manner, a given
application cost function [59, 151, 152]. Therefore, in this paper, we focus on
the latter avenue. In Section 3.2, we provide a literature review on this subject.

3.1.1
Objective and contribution

The objective of this paper is to present a new closed-loop application-
driven learning framework to be used in point forecast applications. In the
proposed method, the application is characterized through an optimization
model, which is then used as part of the estimation problem. In this new frame-
work, both ex-ante (planning) and ex-post (implementation/assessment) cost-
minimization structures of the decision-maker, i.e., the application schema, are
considered in the prediction process. Therefore, our framework replaces the
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traditional statistical error minimization objective with a cost-minimization
structure of a specific application.

To achieve the objectives described before, we derive the following general
technical contributions:

– A new and flexible application-driven learning framework based on a
bilevel optimization model. To the best of the authors’ knowledge, for
the first time in the literature, the relevant case of applications based
on linear programming models affected by right-hand-side uncertainty
is addressed with specialized algorithms. Two solution approaches are
presented. The first approach is an exact method based on the KKT
conditions of the second-level problem. The second is a scalable heuristic
approach suitable for decomposition methods and parallel computing.
Although not limited to linear bilevel programs, we show how to design
efficient methods tailored for off-the-shelf linear optimization solvers.
Additionally, our scalable heuristic method ensures optimal second-level
solutions. This is a salient feature of our method in contrast with
other methods that rely on surrogates of the second level [151] or solve
approximations of the KKT conditions with non-linear solvers [152]. In
this context, the proposed framework is general and suitable for a wide
range of applications relying on the standard structure of the forecast-
decision process.

– We provide new asymptotic convergence proofs for both the objective
function value and estimated parameters of the proposed application-
driven learning method. The convergence proof is completely novel and
highlights that the method is asymptotically the best that can be done
for a specific application (described by planning and implementation
processes) given a forecast functional form (see Corollary 1). It is
important to emphasize that Lemma 1 extends the state-of-the-art
SAA results from [153] to stationary-ergodic time series, which is also
a relevant contribution to the subject. Under the hypothesis of our
methodology and based on the aforementioned convergence results, we
show that the solution of our method converges to the best estimator in
terms of the expected cost of the selected application.

Notwithstanding, our paper also provides relevant contributions to the
applied field of power systems operation. In particular, the application of this
paper focuses on the problem of demand and reserve requirements forecasting
for power system operators. This is a critical problem of the power systems
industry, which has not been addressed by previous works on the subject and
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is currently being tackled by system operators through ad hoc out-of-market
actions to address the net load uncertainty [145]. Therefore, as a contribution to
this applied field, we propose a new methodology to forecast the load and define
the reserve requirements for the power-system dispatch planning application.
The method can be used to either jointly optimize the load forecast and reserve
requirements or to optimize only the reserve requirements given an exogenous
forecast for the load. In both cases, the optimal solution defines the optimal
policy to dynamically allocate reserve requirements so that the expected cost
is minimized in the long run. In both cases, agents are provided with a
scientifically grounded and comprehensively described methodology that can
be used to reduce the number of ad hoc procedures currently implemented in
practice.

In our specific application, the bilevel formulation can be summarized as
follows. The first level accounts for both the predictive model specification
(parameter selection) and the cost evaluation metric based on the actual
operation of the system for many data points. It is relevant to mention that
the methodology is flexible to internalize and address relevant practical issues,
such as reserve requirement constraints imposed by regulatory rules, reliability
standards [154, 139], and risk-aversion metrics [153]. In the second level,
the ex-ante energy and reserve scheduling process of the system operator is
accounted for based on 1) a conditional demand forecast and 2) the definition
of adjusted (dynamic) reserve requirements, both defined in the first level as a
function of previous data for each point of the training set. Thus, in our bilevel
model, we have multiple parallel lower-level problems, each of which represents
the one-step-ahead deterministic two-stage scheduling process performed by
the system operator for each point of the training dataset. In this context,
the second level ensures closed-loop feedback characterizing joint scheduling
decisions of energy and reserve allocations without perfect information on the
target period data. Such a closed-loop formulation applied to the definition of
conditional load forecasts and dynamic reserve requirements is a salient and
original contribution to the subject of power systems operation.

Finally, to empirically corroborate the relevance of our contributions and
to demonstrate the applicability, performance, and scalability of our methodol-
ogy, we benchmark the proposed method with the traditional sequential least
squares forecast and energy and reserve scheduling approach. To do that, we
analyze the proposed methodology in several case studies using multiple test
systems. First, we present studies with an illustrative single-bus system to
explore multiple properties of the methods. Second, we apply the method to
various instances based on the IEEE 24-, 118-, and 300-bus test systems to
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show that the results are of high quality. Third, we consider 10 data sets rang-
ing from 600 to 6000 buses created artificially by combining instances of the
300 bus system to analyze the scalability of the method. Fourth, we consider
realistic, very large-scale systems, ranging from 6,468 to 13,659 buses, with
infrastructure and conditions that are very close to those of a systems opera-
tor performing hour-ahead planning to demonstrate that the methodology can
be seriously considered for deployment by operators. Results show that the
two proposed application-driven learning approaches (demand and reserves,
and only reserves) yield consistently better performance on out-of-sample tests
than the benchmark where forecasts and decisions are sequentially carried out.
For large and very large systems, where the exact method fails to find solu-
tions within reasonable computational times, the heuristic method exhibits
high-quality performance compared to the benchmark for all test systems.

3.2
Literature Review

We review the literature on 1) forecast models jointly optimized for a
given application, hereinafter referred to as application-driven forecast, and 2)
uncertainty forecasting and reserve sizing.

3.2.1
Application-driven forecast models

The ingenious idea of integrating the process of forecasting and optimiz-
ing a downstream problem was first proposed in the seminal paper by [59].
More than twenty years ago, the author emphasized the importance of esti-
mating parameters with the correct goals in mind. In that work, a Neural
Network (NN) is trained to forecast stocks with an objective function that
describes the portfolio revenue given an allocation based on stocks forecast.
Still, in the finance sector, [155] proposed new neural network structures and
presented extremely promising benchmarks. An attempt to lower the burden
of the method was proposed by [156]; the idea is to train multiple prediction
models with standard regressions, but choose the best one in the out-of-sample
analysis considering the proper application-driven objective function. The work
by [157] presents another intermediary methodology. The model for estimating
forecasts includes both the application objective function and the fitness mea-
sure similar to maximum likelihood estimation (MLE). A bi-objective problem
is solved with scalarization; the authors look for a good balance between MLE
and application value.

Following the key idea of [59] closely, the work by [158] presents a generic
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algorithm to deal with parameter optimization of forecasting models embedded
in stochastic programming problems, that is, parameters estimated considering
the loss function of the actual problem. The algorithm is based on the
stochastic gradient descent (SGD) method and employs tools for automatically
differentiating strongly convex quadratic optimization problems. The method
is applied to small prototypical quadratic programming problems and the
local solutions obtained are shown to be promising. The idea of extending
to combinatorial problems via convexification and regularization (to make it a
QP) schemes is presented in [159].

More recently, the work Smart “Predict and Optimize" (SPO) [151],
recognizes the importance of closed-loop estimation. The authors develop an
algorithm for the linear programming case that is based on relaxation and
convexification of the nonlinear loss function before applying a tailored SGD
approach, instead of looking for local solutions with nonlinear methods. To
develop the algorithm, the authors limit themselves to linear dependency on
features and restrict uncertainty to the objective function. This contrasts with
our work that preserves the original planning and implementation functions
(detailed in Section 3.3) and focuses on non-linear methods to obtain global
or local solutions. Theoretical improvements were made to the SPO method
in [160], which presents new bounds for the generalization capability of the
method. Also following SPO, [161] presents an adaptation of SPO for the case
of combinatorial problems. SPO is similar to the method proposed by [162]
to estimate uncertain objective coefficients without considering features in a
different context.

While working on this paper, the authors became aware of the work by
[152] (developed simultaneously with ours, by a completely different team)

that guards many conceptual similarities to the general version of our
proposed model. The work of [152] also focuses on the idea of finding the best
forecast for a given application (or context) through a bilevel framework. The
framework proposed in [152] is applied to estimate a parameter of the inverse
demand curve of a Cournot strategic producer bidding in forward markets.
The scalability of their model relies on a nonlinear relaxation of the right-
hand side of the complementarity constraints. In our method, we adopt a
different approach to overcome the issue of suboptimal lower-level solutions
and to tackle very large-scale problems, as will be explained in Section 3.8.4.
Moreover, we prove convergence of our method, whereas [152] only analyze the
convergence in a particular example and point to a preprint of our work when
discussing the requirement of lower level uniqueness in their bilevel program.

[163] describes a framework named Decision Based Model Selection,
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which fits in the general grand scheme of properly combining forecasting and
optimizing decisions. The authors propose a two-step procedure. First, they
estimate a forecasting model with available data and generate more samples
with this model; then, with a new (artificial) data set in hand, the model
(forecasting + optimization model + algorithm) with the best decisions is
chosen from a discrete list. The framework is general enough to allow forecasts
that depend on decisions. Related work in power systems is [164] that proposed
to generate multiple forecasting models and then select the best one according
to a min-max regret based on the application cost.

[165] and [166] describe the so-called Learning Enabled Optimization
(LEO). LEO is a framework to combine Statistical Learning (SL), Machine
Learning (ML) and (stochastic) Optimization. The idea is to compare a set
of predefined SL/ML models with the cost value of the actual application in
mind. The main difference here is that the ML/SL are still estimated based
on classical methods. More recently, LEO has been extended to Coupled LEO
to accommodate decision-dependent uncertainty [167] solved by derivative-free
methods.

Also related is the field of Optimal Learning [168, 169]. Optimal Learn-
ing is very broad, encompasses many techniques and can be applied to an
enormous range of problems, as detailed by the previous references. The idea
of estimating unknowns through experimentation and testing guesses in sim-
ulation models is a possible framework for choosing forecast models based on
applications. Deeply related to Optimal Learning is Bayesian Optimization
[170, 171], which is a set of methods used to optimize continuous functions,
typically low dimensional (possibly noisy) functions that are expensive to eval-
uate, which might be the case of an application as a cost function.

Not surprisingly, some of the above works formulate the problems as
bilevel optimization problems, which is mostly done implicitly and rarely
explicitly [152]. For more information on bilevel optimization, the reader
is directed to [30]. The work by [32] lists hundreds of references related
to bilevel optimization, including papers related to parameter optimization.
Parameter optimization is frequently modeled as bilevel optimization and
has been drawing the attention of many fields, such as ML, control, energy
systems, and game theory. This can be thought of as a version of the closed-
loop paradigm since these works target the best parameters for algorithms
and applications. We refer to [5] for applications in hyper-parameter tuning.
Under a broader ML umbrella, our methodology can be seen as an ML forecast
approach where the application schema is embedded into the method through
its explicit mathematical programming formulation.
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3.2.2
Uncertainty forecasting and reserve sizing

The operation of power systems has been profoundly related to uncer-
tainty handling. The electric load has been among the main challenges for
forecasters in power systems for many years. Researchers around the world
have proposed the most varied methodologies, ranging from standard linear
regressions to Neural Networks (NN); these techniques, along with many oth-
ers, are reviewed in [48] and [172]. The forecast of variable renewable energy
sources is probably one of the current big challenges power systems. Although
many techniques are already available, forecasting renewable generation such
as from wind farms has proven to be significantly harder than load [172, 173].
As shown in reviews [174, 172], wind and solar forecasting are divided into
two main trends: i) physical-based methods that rely on topographic models
and Numerical Weather Predictions; ii) statistical methods, including Kalman
filters, ARMA models, and NN.

Although forecast methods have consistently improved in the last years,
the systems must be ready to withstand deviations from predicted values. The
widely used approach is to allocate reserves in addition to the power scheduled
for each generator to meet demand forecasts. The additional power is scheduled
as reserve margins to give the system operator flexibility to handle real-time
operations. Many methods have been proposed to account for the variations
in loads, contingencies, and variable renewable energy [175]. Furthermore,
different reserve sizing rules are applied by different ISOs all over the world
[139]. These rules vary from deterministic ad hoc procedures to more statistical-
oriented guidelines.

In [139], examples of real-life ad hoc procedures to allocate reserves
are presented, most of them relying on static approaches. Although time-
varying reserves have been studied in the past, they have re-emerged as
dynamic probabilistic reserves [54]. In the context of a more sophisticated
dynamic probabilistic reserve approach, probabilistic forecasts are frequently
used to account for forecast errors. These probabilistic reserves can be sized
following a variety of methods with different complexity based on: forecast
error standard deviations [176, 175], non-parametric estimation of the forecast
error distribution [177], or even machine learning [54]. These are all considered
stochastic methods and are simple alternatives to capture and incorporate
fairly complex dynamics that are challenging for bottom-up approaches.

A prominent alternative to the use of reserves in power systems is the
Stochastic Unit commitment. In such applications, many types of reserves can
be defined endogenously, targeting cheaper operations on average. However,

DBD
PUC-Rio - Certificação Digital Nº 1812676/CA



Chapter 3. Application-Driven Learning:
A Closed-Loop Prediction and Optimization Approach
Applied to Dynamic Reserves and Demand Forecasting 69

as described in the review on Unit Commitment by [178], there are at
least three main barriers toward the wide acceptance of stochastic unit
commitment: i) uncertainty modeling, ii) computational performance, and iii)
market design. Uncertainty modeling is jointly tackled by statistical modeling
of the uncertainty concerning scenario generation and forecasting and by
a decision-making framework like risk-averse stochastic optimization, robust
optimization, and so on. Computational performance is the focus of many
works like the Lagrangian decomposition [179], improved formulations [180],
progressive hedging [181]. Notwithstanding the relevant recent advances in this
area, the computational burden and the consequential instability of solutions
under small sample sizes still preclude the acceptance of stochastic UC models
by ISOs. Finally, the least studied challenge is market design. It requires
experimenting and developing rules that are both feasible to be implemented
and accepted by stakeholders [182, 143]. Based on previously reported industry
practices and since ISOs currently follow the alternate route and tackle the
uncertainty of UC with reserves [143], we will also follow this approach to
propose a readily practical method.

3.3
Application-Driven Learning and Forecasting

In this section, we contrast the standard sequential framework, referred
to as open-loop, and the joint prediction and optimization model, referred to
as closed-loop. The presentation is in general form to facilitate the description
of the solution algorithm, to set notation for the convergence results and to
highlight that the method has applications beyond load forecasting and reserve
sizing in power systems. We will specialize the bilevel optimization problem
for closed-loop load forecasting and reserve sizing in Section 3.7.

We consider a dataset of historical data {yt, xt}t∈T, where T = {1, . . . , T}.
Here yt are observations of a variable of interest that we want to forecast, while
xt are observations of external variables (covariates or features) that can be
used to explain the former. Furthermore, the latter might include lags of yt as
in autoregressive time series models. Additionally, it is worth mentioning that
both yt and xt can be vector-valued.

The classic forecast-decision approach works as follows. The practitioner
trains a parametric forecast model seeking for the best vector of parame-
ters, θ, such that a loss function, l(·, ·), between the conditional forecast
for sample t, ŷt(θ, xt), and the actual data, yt, is minimized, i.e., solving
minθ

1
T

∑
t l(ŷt(θ, xt), yt). This is frequently done by solving LS optimization

problems and finding θLS ∈ argminθ
1
T

∑
t ∥ŷt(θ, xt) − yt∥2. In the planning
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step, a decision is made by an optimized policy based on the previously ob-
tained forecast, i.e., with ŷLS

t = ŷt(θLS, xt). This results in a vector z∗(ŷLS
t ),

which in our application comprises the schedule of energy and reserves through
generating units. Finally, the actual data yt is observed, and the decision-maker
must adapt to it, for instance, the system operator responds with a balancing
re-dispatch, and a cost, Ga(z∗(ŷLS

t ), yt), is measured. There is no feedback of
the final cost into the forecasting and decision policy, hence, the name open-
loop.

3.3.1
The proposed closed-loop application-driven framework

The core of the proposed predictive framework is to explore a feedback
structure between the estimated predictive model and the application cost
assessment. The general idea is depicted in Figure 3.1, which also stresses the
difference from the open-loop model.

Uncertainty
Forecast

Policy
Planning

Cost
Assessment

Model
Training

xt yt

ŷt(θ, xt) z∗(ŷt(θ, xt))

Ga(z∗(ŷt(θ, xt)), yt)θ

{yt, xt}t∈T

Figure 3.1: Learning models: considering the dashed line we have the closed-
loop model, otherwise it represents the open-loop model.
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The estimation method can be mathematically described through the
following bilevel optimization problem (BOP):

θT∈ arg min
θ∈Θ,ŷt,z∗

t

1
T

∑
t∈T

Ga(z∗
t , yt) (3-1)

s.t. ŷt = Ψ(θ, xt) ∀t ∈ T (3-2)

z∗
t ∈ arg min

z∈Z
Gp(z, ŷt) ∀t ∈ T, (3-3)

where, for i ∈ {a, p},

Gi(z, y) = c⊤
i z +Qi(z, y) (3-4)

Qi(z, y) = min
u
{q⊤

i u | Wiu ≥ bi −Hiz + Fiy} (3-5)

Note that the functions in (3-4) and (3-5) resemble the formulation of
two-stage stochastic programs, in the sense that given a decision z and an
observation y, one determines the best corrective action u. In that context,
ci, qi, Wi, bi, Hi and Fi (i ∈ {a, p}) are parameters defined according to the
problem of interest. The a subscript refers to assessment, while the p subscript
refers to planning. Note also that the uncertainty y appears only on the right-
hand side of the problems defining Qa and Qp; this will be important for our
convergence analysis and solution methods.

In model (3-1)–(3-5), Ψ(θ, xt) represents a forecasting model that depends
on both the vector of parameters, θ, and the features vector, xt, possibly
including lags of yt. The vector ŷt is the forecast generated for sample (or
period) t (comprising load and reserve requirements) conditioned to the
vector of features, xt, as defined in (3-2). For each t, the forecast ŷt is
used as input in a second-level problem and a decision planning policy, z∗

t ,
is obtained as a function of ŷt, i.e., z∗

t (ŷt). This is done by optimizing the
decision-maker planning cost function, Gp(z, ŷt) in (3-3). Then, the optimized
policy z∗

t is evaluated in the first level against the actual realization, yt,
for each t. The evaluation is made under the decision-maker’s assessment
(or implementation) cost function, Ga(z∗

t (ŷt), yt). Hence, the application is
embedded into the estimation process in both the ex-ante planning policy
and ex-post implementation objective (3-1)–(3-5). It is worth noticing that
the proposed formulation can be interpreted as an optimization over θ in a
back-test, in which for a given θ, the assessment of the forecast performance is
completely determined by Ga(z∗

t (ŷt), yt). Within this context, the upper level
identifies the parameters with the best back-test performance. Furthermore,
note that for a fixed θ, there is no coupling between two samples, thereby
the model can be decomposed per t. This will be used in one of the proposed
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solution methods. Finally, there is a slight abuse of notation in (3-1) because
the argmin only retrieves θT , a solution for θ with T samples, thus disregarding
the rest of the first level decision vectors, ŷt and z∗

t . Note that θT is one among
the multiple options in the set of all possible solutions ST .

One key difference from previous works [158, 151, 152] is that Ga and
Gp can be different functions. This is extremely useful in the context of
power systems operations where planning models might differ from real-time
ones. Although model (3-1)–(3-3) is fairly general, we specialize to the case
of linear programs and right-hand-side uncertainty, (3-4)–(3-5), and we will
assume polyhedral structure for the set Z in (3-3). This can be contrasted
with previous works that considered strongly quadratic programs [158] and
objective uncertainty [151]. As mentioned earlier, this specialization will be
important for developing our asymptotic convergence results and our solution
methods.

3.4
A Motivating Example

In this interlude, we present a small and illustrative example to showcase
how asymmetries can affect open-loop and closed-loop models.

Consider the scheduling process for the next hour of a power system
containing a single power plant with a capacity of 4 MW (hence, capable of
generating 4 MWh in an hour) and a generation cost of 10 $/MWh. Consider a
penalty of 100 $/MWh for scheduling the plant below the realized demand and
0 for scheduling above the realized demand. Now, consider a demand for a given
hour with the following mass distribution: 0 MWh with a probability of 0.5
and 2 MWh with a probability of 0.5. We consider there are no reserves for the
sake of simplicity. Also, suppose there are no external variables, and consider
the forecast model: Ψ(θ) = θ to obtain a demand forecast D̂, i.e., D̂ = θ.
The LS solution for the demand forecast is D̂ = 1 as it is the minimizer of:
minθ 0.5(0− θ)2 + 0.5(2− θ)2.

Consider the following optimization of the planning function, Gp:

g∗ ∈ arg min
g,δLS ,δSP

10g + 100δLS + 0δSP (3-6)

s.t. g + δLS − δSP = D̂ (3-7)

0 ≤ g ≤ 4, 0 ≤ δLS, 0 ≤ δSP (3-8)

where g is the generation being scheduled for the related hour, g∗ is the
schedule decision, δLS is the value of load shed (missing energy), and δSP

is the load being spilled (excess energy). The optimization of the assessment
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(or implementation) function, Ga, is given by:

min
δLS ,δSP

10g∗ + 100δLS + 0δSP (3-9)

s.t. δLS − δSP = D − g∗ (3-10)

0 ≤ δLS, 0 ≤ δSP (3-11)

where g∗ is fixed and D is the actual demand that is realized during the
implementation.

Considering the LS forecast, the operator will run its dispatch plannning
model and say that the generator should be set to g∗ = 1 (MWh), at the cost
of 1× 10 = 10 $. Later, in the assessment or implementation step, 50% of the
time, the total cost will be just 10 $, as the system was over-prepared, and
50% of the time, the cost will be 1× 10 + 1× 100 = 110 $, thereby leading to
an average cost of 0.5× 10 + 0.5× 110 = 60 $.

Now consider a biased forecast of D̂ = 1.1 (MWh). The generator should
be set to g∗ = 1.1, at cost of 1.1 × 10 = 11 $. Hence, 50% of the time,
the total cost will be just 11, as the system was over-prepared, and 50% of
the time, the cost will be 1.1 × 10 + 0.9 × 100 = 101 $, thus leading to an
average cost of 0.5 × 11 + 0.5 × 101 = 56 $. Hence, on average, a biased
forecast did perform better than the LS forecast for the problem in question.
Notwithstanding, based on our methodology, we can go even further and obtain
the best forecast for this application. For this simple case, we can analytically
compute the application-driven cost function given a forecast rule, D̂ = θ. For
simplicity, we only consider D̂ ∈ [0, 2], which contains the extremes of the
support set. Thus, in this case, g∗ = D̂. So, if θ ≤ 2, then the cost is given
by 10θ + 0.5 × 100(2 − θ). Else, if θ ≥ 2, then the average cost is 10θ and
the minimizer is clearly D̂ = θ = 2, which is clearly different from the one
obtained with least squares (D̂ = 1).

One of the main reasons for the phenomenon described above is that
the operator is constrained to a specific decision rule (planning method) that
has to consider a given forecast in a predetermined way. While the above
example is indeed very stylized to allow for a simple exposition, it carries the
fundamental idea that is applied in most power systems: 1) planning models are
predetermined and must consider demand forecasts; 2) costs are asymmetric
as the cost of not delivering energy is usually more expensive than over-
scheduling; 3) some operators have noticed the relevance of the asymmetry and,
as described in the introduction, have been implementing ad hoc procedures
to introduce out-of-market bias on forecasts.
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3.5
Convergence Results

In this section, we discuss some conditions for the convergence of es-
timators obtained with application-driven joint prediction and optimization.
Again, our goal is to obtain the best possible forecast ŷt, but this is completely
defined by the parameters θ since xt is known. Let ST be the set of optimal
solutions of (3-1)-(3-5), so that θT ∈ ST . We will show that any sequence of θT ,
each in the set ST , converges to the solution set of the actual expected value
formulation of the problem (as opposed to the previously presented sampled
version). We will start by describing some assumptions, then we will state and
prove the main theorem.

Assumption 1 There is a unique solution zt of optimization problem (3-3)
for all possible values of ŷt.

In other words, the problem is always feasible and the solution set is a singleton.
This is not as restrictive as it seems. The feasibility requirement is similar to
the classical assumption of complete recourse in stochastic programming. The
above uniqueness requirement is equivalent to the absence of dual degeneracy
in a linear program [183]. In this case, the problem in question is dual-
degenerate, but it is possible to eliminate this degeneracy by perturbing the
objective function—in our case, the vectors cp and qp—with small numbers
that do not depend on the right-hand-side (RHS) of the problem. Thus, the
same perturbation is valid for all possible ŷt [184]. Another possibility would
be resorting to some lexicographic simplex method [185].In this setting, we can
define the set-valued function:

ζ(y) := argminz∈Z Gp(z, y) (3-12)

From [186] we know that if ζ(y) is a compact set for all y then it is a continuous
set-valued function. Moreover, since ζ(y) is a singleton for all possible values of
y, then we treat it as a vector-valued function that is continuous and piece-wise
affine [183].

Assumption 2 The feasibility set Z that appears in (3-3) is a non-empty and
bounded polyhedron.

Assumption 2 is reasonable since this is the set of implementable solutions of
the decision-maker, typically representing physical quantities.

Assumption 3 The feasibility set of the dual of the problem that defines
Qa(z, y) in (3-5) is non-empty and bounded.
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Note that the set from Assumption 3 does not depend on z and y, since they
appear in the RHS of the primal problem. Again, this assumption is akin to
a relatively complete recourse assumption applied to the problem defining the
outer-level function.

We state now our main convergence result.

Theorem 1 Consider the process given by (3-1)–(3-5) and any possible output
θT ∈ ST , for each T . Suppose that (i) Assumptions 1, 2 and 3 hold, (ii)
the forecasting function Ψ(·, ·) is continuous in both arguments, (iii) the data
process (X1, Y1), . . . , (XT , YT ) is independent and identically distributed (with
(X, Y ) denoting a generic element), (iv) the random variable Y is integrable,
and (v) the set Θ is compact. Then, with probability 1,

lim
T →∞

d(θT , S
∗) = 0, (3-13)

where d is the Euclidean distance from a point to a set and S∗ is defined as

S∗ = argminθ∈Θ

[
Ga

(
ζ(Ψ(θ,X)), Y

)]
, (3-14)

with ζ(·) defined in (3-12).

Proof: First, notice that Gi(z, Y ), i ∈ {a, p}, is continuous with respect to
its arguments as it is a sum of a linear function and the optimal value
of a parametric program [187]. Recall that ζ is a continuous vector-valued
function because of Assumption 1. Hence, Ga(ζ(Ψ(θ,X)), Y ) is a real-valued
continuous function. Next, we show that Ga(ζ(Ψ(θ,X)), Y ) is integrable.
Indeed, since Z is bounded (Assumption 2), it follows that ζ(y) is bounded
for all x by a constant, say K1, so that ∥ζ(y)∥ ≤ K1. By duality, Qi(z, y) =
max

π
{(bi − Hiz + Fiy)⊤π | W⊤

i π = qi, π ≥ 0}, but by Assumption 3 the dual
variables of Qa(z, y) are bounded by a constant, say K2, so ∥π∥ ≤ K2. Thus,
by a sequence of applications of Cauchy-Schwarz and triangle inequalities, we
have that

∣∣∣Ga(ζ(Ψ(θ,X)), Y )
∣∣∣ ≤ ∣∣∣c⊤

a ζ(Ψ(θ,X)) +Qa(ζ(Ψ(θ,X)), Y )
∣∣∣

≤
∥∥∥ca

∥∥∥∥∥∥ζ(Ψ(θ,X))
∥∥∥+∥∥∥ba −Haζ(Ψ(θ,X)) + FaY

∥∥∥ max
W ⊤

i π=qa,π≥0

∥∥∥π∥∥∥
≤ K1

∥∥∥ca

∥∥∥ +K2
(∥∥∥ba

∥∥∥ +
∥∥∥Haζ(Ψ(θ,X))

∥∥∥ +
∥∥∥FaY

∥∥∥)
≤ K1

∥∥∥ca

∥∥∥ +K2
(∥∥∥ba

∥∥∥ +
∥∥∥Ha

∥∥∥K1 +
∥∥∥Fa

∥∥∥∥∥∥Y ∥∥∥)
.
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Hence, since Y is integrable (condition (iv) of the Theorem), we have that
Ga(ζ(Ψ(θ,X)), Y ) is integrable.

It follows that the conditions of Theorem 7.53 in [153] are satisfied and
we conclude that: (i) the function φ(θ) := E[Ga(ζ(Ψ(θ,X)), Y )] is finite valued
and continuous in θ, (ii) by the Strong Law of Large Numbers, for any θ ∈ Θ
we have

lim
T →∞

1
T

T∑
t=1
Ga

(
ζ(Ψ(θ,Xt)), Yt

)
=

[
Ga

(
ζ(Ψ(θ,X)), Y

)]
w.p.1, (3-15)

and (iii) the convergence in (3-15) is uniform in θ. Thus, by Theorem 5.3 in
[153], since the set Θ is compact we have that the minimizers (over Θ) of the
expression inside the limit on the left-hand side of (3-15)—i.e., θT —converge
to the minimizers of the expression on the right-hand side in the sense of
(3-13)–(3-14). Q.E.D.

Remark 1 Assumption 3 can be replaced by assuming a compact support of
Y ; in this case, Ga(z, y) is a continuous function, where both arguments are
defined on compact sets, hence it attains a maximum and is trivially integrable.

While Theorem 1 provides the desired convergence result, condition (iii)
of the theorem clearly precludes modeling the situation where the features
xt include (functions of) previous observations yt−1, . . . , yt−k. We now extend
that result to the case where the features xt include only lagged observations
of {yt}. To do so, suppose that the data process generating {Yt}∞

t=1 is a
stationary ergodic time series. Stationarity means that the joint distribution
of (Y1, Y2, . . . , Yk) is the same as the joint distribution of (Yt+1, Yt+2, . . . , Yt+k)
for all positive integers t and k. It is a standard assumption in the analysis
of time series; see, e.g., [188] (note that [188] actually call this notion strict
stationarity, but elsewhere in the literature it is called just stationarity; see,
e.g., [189] or [190]). On the other hand, an ergodic time series is—roughly
speaking—one that exhibits a form of “average asymptotic independence”;
a precise definition can be found, for instance, in [189]. Statistical tests for
stationarity and ergodicity of Markovian processes have been developed by
[191].

For reference, we state now a lemma that provides a more general result
than Theorem 7.53 in [153]:

Lemma 1 Theorem 7.53 in [153] is still valid if the i.i.d. assumption is
replaced with a weaker assumption that the samples form a stationary ergodic
process.
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Proof: Any measurable function of a stationary ergodic process is also a
stationary ergodic process [190]. Moreover, if a process {Wt}∞

t=1 is stationary
and ergodic, then the classical ergodic theorem (see, e.g., [190]) ensures that

lim
T →∞

1
T

T∑
t=1

Wt = [W1] w.p.1.

A closer look at the proof of Theorem 7.53 in [153] shows that the i.i.d.
assumption is used only to invoke the Strong Law of Large Numbers, which
as shown above, can be replaced by the ergodic theorem in the more general
case. Q.E.D.

We can now state a more general version of Theorem 1:

Theorem 2 Theorem 1 is still valid if the assumption that the data process
(X1, Y1), . . . , (XT , YT ) is independent and identically distributed is replaced
with the following assumption: Xt is defined as a (measurable) function of
Y1, . . . , Yt, and the data process generating {Yt}∞

t=1 is a stationary ergodic time
series.

Proof: Fix θ ∈ Θ. Consider the function Φ defined as

Φ(Y1, . . . , Yt) := Ga

(
ζ(Ψ(θ,Xt)), Yt

)
and process {Wt}∞

t=1 defined asWt := Φ(Y1, . . . , Yt). Under the assumption that
{Yt}∞

t=1 is a stationary ergodic time series, it follows that {Wt}∞
t=1 is stationary

and ergodic, since Φ is measurable. Lemma 1 shows that (3-15) holds in this
case and, therefore, the proof follows the same steps as those of the proof of
Theorem 1. Q.E.D.

Corollary 1 Theorems 1 and 2 imply that if Ga is an assessment function
describing the ultimate goal of a given practitioner—e.g., the expected cost
incurred when using the forecast function Ψ(θ,X) within a given application—
then, under the conditions of Theorem 1 or Theorem 2, any convergent
subsequence of the process {ΘT}∞

T =1 generated by the estimation process
(3-1)–(3-5) converges to the (not necessarily unique) best forecast model,
Ψ(θ∗, X), in terms of the related application. That is,

[
Ga

(
ζ(Ψ(θ∗, X)), Y

)]
≤[

Ga

(
ζ(Ψ(θ,X)), Y

)]
∀θ ∈ Θ. This ensures that our model performs asymptot-

ically better than the classical offline approaches.

Proof: Because of Theorem 1 or Theorem 2, we know that the distance between
θT and the set S∗ of minimizers of the underlying problem (given by (3-14))

DBD
PUC-Rio - Certificação Digital Nº 1812676/CA



Chapter 3. Application-Driven Learning:
A Closed-Loop Prediction and Optimization Approach
Applied to Dynamic Reserves and Demand Forecasting 78

converges to zero as T →∞. Thus, any convergent subsequence of the process
{ΘT}∞

T =1 converges to some minimizer θ∗ ∈ S∗. Moreover, since {ΘT}∞
T =1 ⊆ Θ

and Θ is assumed to be compact, it follows that there exists at least one
convergent subsequence. Meanwhile, any other possible choice of θ, obtained
by any other estimation method, is merely a feasible solution for the underlying
problem, hence, cannot be strictly better than θ∗. Q.E.D.

Corollary 1 highlights that application-driven learning is the best one
can do for a fixed triplet of assessment, planning and forecasting functions
when the ultimate goal is only minimizing the assessment cost. Although it
is possible that other methods lead to the same optimal objective cost, they
cannot be better. For other goals, such as minimizing the squared error of
forecasts, other methods, such as least squares, will be better since they are
inherently aligned with such other goals.

3.6
Solution Methodology

In this section, we describe solution methods to estimate the forecasting
model within the proposed application-driven closed-loop framework described
in (3-1)–(3-5). First, we present an exact method based on an equivalent single-
level mixed integer linear programming (MILP) reformulation of the bilevel
optimization problem (3-1)–(3-5). This method uses MILP-based linearization
techniques to address the Karush Kuhn Tucker (KKT) optimality conditions
of the second level and thereby guarantee the global optimality of the solution
in exchange for limited scalability. Second, we describe how to use zero-
order methods [192] that do not require gradients to develop an efficient
and scalable heuristic method to achieve high-quality solutions to larger
instances. These methods will leverage existing optimization solvers, their
current implementations and features.

3.6.1
MILP-based exact method

Our first approach consists of solving the bilevel problem (3-1)–(3-3)
with standard techniques based on the KKT conditions of the second-level
problem [80]. Thus, the resulting single-level nonlinear equivalent formulation
can be reformulated as a MILP and solved by standard commercial solvers.
The conversion between the KKT form to the MIP form can be done by
numerous techniques [81, 128, 80], all of which have pros and cons. These
techniques are implemented and automatically selected by the open-source
package BilevelJuMP.jl [1]. This new package was conceived to allow users to
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formulate bilevel problems in JuMP [38] and solve them with multiple off-the-
shelf optimization solvers.

For the sake of completeness, we write the single-level nonlinear refor-
mulation of the bilevel problem (3-1)–(3-5) in (3-16)–(3-20). For simplicity, in
this model, we assume that Z = {z|Ax ≥ h} and that Θ is polyhedral.

min
θ∈Θ,ŷt,z∗

t ,ut,πt

1
T

∑
t∈T

[
c⊤

a z
∗
t +Qa(z∗

t , yt)
]

(3-16)

s.t. ∀t ∈ T :

ŷt = Ψ(θ, xt) (3-17)

Wpyt +Hpz
∗
t ≥ bp + Fpŷt ; Az∗

t ≥ h (3-18)

Wp
⊤πt = qp ; H⊤

p πt + A⊤µt = cp ; πt, µt ≥ 0 (3-19)

πt ⊥ Wput +Hpz
∗
t − bp − Fpŷt ; µt ⊥ Az∗

t − h (3-20)

Equations (3-16) and (3-17) are the same as (3-1) and (3-2). (3-3) was replaced
by (3-18)–(3-20). (3-18) are the primal feasibility constraint, (3-19) are the dual
feasibility constraints, and (3-20) represents the complementarity constraints.

3.6.2
Scalable heuristic method

The proposed class of methods will make extensive use of the way of
thinking described in Figure 3.1. In other words, the core algorithm decomposes
the problem as follows: We call this method a pseudo-algorithm because a few

Algorithm 1: Pseudo algorithm
Result: Optimized θ
Initialize θ ;
while Not converged do

Update θ;
for t ∈ T do

Forecast: ŷt ← Ψ(θ, xt);
Plan Policy: z∗

t ← arg minz∈Z Gp(z, ŷt);
Cost Assessment: costt ← Ga(z∗

t , yt)
end
Compute cost: cost(θ)← ∑

t∈T(costt)
end

steps are not well specified, namely Initialization, Update, and Convergence
check, allowing for a wide range of possible specifications. Initialization can
be as simple as θ receiving a vector of zeros, which might not be good if the
actual algorithm is a local search. One alternative that will be applied in the
case study section is the usage of traditional models as starting points, for
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instance, the ordinary least squares. In the case study, we will initialize the
algorithm with the LS estimate, this guarantees that the algorithm will return
at most the same cost as the open-loop framework in the training sample. There
are many possibilities for the convergence test. For instance, iteration limit,
time, the variation of the objective function value, and other algorithm-specific
tests. Finally, the update step depends on the selected concrete algorithm that
is ultimately minimizing the non-trivial cost(θ) function.

We will focus on a derivative-free local search algorithm named Nelder-
Mead [192]. Notwithstanding, it is relevant to highlight the generality of the
proposed pseudo-algorithm. For instance, gradient-based algorithms could also
be developed based on numerical differentiation and automatic differentiation
[185]. In this context, gradient calculation would enable the usage of Gradient
Descent and BFGS-like algorithms [185].

The main features of the above-proposed pseudo-algorithm are: 1) it is
suitable for parallel computing (the loop in the sample T is intrinsically de-
coupled); 2) each step is based on a deterministic LP defining the second-level
variables in (3-3), suitable for off-the-shelf commercial solvers that find glob-
ally optimal solutions in polynomial time; 3) each inner step can significantly
benefit from warm-start processes developed in linear programming solvers
(e.g., the dual simplex warm-start is extremely powerful, and many times only
a handful of iterations will be needed in comparison to possibly thousands of
iterations if there were no warm-start, cf. [185]). It is worth emphasizing that
the aforementioned feature 2) allows for an exact (always optimal) description
of the second-level problem. In our approach, we keep the second level exact
and face the challenge of optimizing a nonlinear problem on the upper level.
In contrast, [152] choose to relax the complementarity constraints and deal
with an NLP-based reformulation lacking the benefits of the above-mentioned
features 1), 2) and 3) of the pseudo-algorithm. As will be illustrated in the case
study, our choice is supported by empirical evidence about the shape of the
nonlinear function faced in the objective function. Additionally, it is usual in
more complex estimation processes (like maximum likelihood-based methods)
to rely on nonlinear optimization methods to select the best parameters [193].
Moreover, although not convex, as explored in our case study, the objective
function seems to be quasi-convex (from the graph inspection) which facilitates
the search within the parameters domain. Finally, note that this heuristic ap-
proach allows for a wider set of forecast models, such as NN and other machine
learning models, as it only requires that a forecast can be pointwise obtained
and its performance evaluated by the cost function for a given trial solution
(parameters).
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One caveat is that variations on θ can lead to possibly infeasible results
for the Policy Planning and Cost Assessment optimization problems. Conse-
quently, we require complete recourse for such problems. In cases where this
property does not hold, it is always possible to add artificial (slack) variables
with high penalty costs in the objective function to keep the problem feasible.
In the energy and reserve dispatch problem, this requirement is addressed by
imbalance variables (load and renewable curtailment decisions).

3.7
Application-Driven Load Forecasting and Reserve Sizing

In this work, we focus on the energy and reserve scheduling problem
of power systems [53, 194]. In this problem, we aim to obtain the best joint
conditional point-forecast for the vector of nodal demands, D̂t, and vectors of
up and down zonal or nodal reserve requirements, R̂(up)

t and R̂
(dn)
t . While the

forecast vector of nodal loads represents, e.g., the next hour operating point
target that system operators and agents should comply with, up- and down-
reserve requirements represent a forecast of the system’s resource availability
(or security margins), defined per zone or node, allowing the system to
withstand load deviations. Note that we can think of loads as a general net load
that corresponds to load minus non-dispatchable (e.g., renewable) generation.

The inputs of the problem are: vectors of historical data of dependent and
explanatory variables, {yt, xt}t∈T, including lags of demand, Dt−1, ..., Dt−k, and
possibly other exogenous covariates such as climate and weather indices (or
forecasts), dummy variables, and non-linear machine-learning-based forecasts
for the dependent variables; vectors of data associated with generating units;
maximum generation capacity, G, dispatch costs or offers, c; maximum up-
and down-reserve capacity, r̄(up) and r̄(dn); up- and down-reserves costs, p(up)

and p(dn); load-shed and spillage penalty costs, λLS and λSP ; network data
comprising the vector of transmission line capacities F ; and network sensitivity
matrix, B, describing the network topology and physical laws of electric
circuits. Additionally, it is important to mention that the input data describing
the system characteristics can be provided under two perspectives: 1) under
the perspective of the actual ex-post (or assessed/implemented) operation, i.e.,
based on the observed demand data and most accurate system’s description for
optimizing the function Ga defined in (3-1); and 2) under the ex-ante planning
perspective, Gp, which is accounted for in (3-3) based on observed features,
such as previous information, and system operator’s description of the system
considered in the dispatch tool. While the former has already been listed at the
beginning of this paragraph, the latter uses the same symbols but with a tilde
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above, i.e., c̃, p̃(up), p̃(dn), G̃, B̃, etc. For a simple matrix representation of the
problem, we define e to be a vector with one in all entries and an appropriate
dimension. M is an incidence matrix with buses in rows and generators in
columns that is one when the generator lies in that bus and zero otherwise.
Similarly, N is an incidence matrix with generators in columns and reserve
zones in rows, which is one if the generator lies in that area. Thus, we study
the following particularization of the closed-loop framework proposed in (3-1)–
(3-5):

min
θD,θRup ,θ

Rdn ,

D̂t,R̂
(up)
t ,R̂

(dn)
t ,g∗

t ,δLS
t ,δSP

t

g∗
t ,r

(up)∗
t ,r

(dn)∗
t

1
T

∑
t∈T

[
c⊤gt + p(up)⊤r̂t

(up)∗ + p(dn)⊤r̂t
(dn)∗+

λLSδLS
t + λSP δSP

t

]
(3-21)

s.t. ∀t ∈ T :

D̂t = ΨD(θD, xt) (3-22)

R̂
(up)
t = ΨR(up)(θR(up) , xt) (3-23)

R̂
(dn)
t = ΨR(dn)(θR(dn) , xt) (3-24)

e⊤(Mgt − δSP
t ) = e⊤(Dt − δLS

t ) (3-25)

− F ≤ B(Mgt + δLS
t −Dt − δSP

t ) ≤ F (3-26)

g∗
t − r

(dn)∗
t ≤ gt ≤ g∗

t + r
(up)∗
t (3-27)

δLS
t , δSP

t , R̂
(up)
t , R̂

(dn)
t , gt ≥ 0 (3-28)(

g∗
t , r

(up)∗
t , r

(dn)∗
t

)
∈ arg min

ĝt,δ̂LS
t ,δ̂SP

t ,

r̂t
(up),r̂t

(dn)

[
c̃⊤ĝt + p̃(up)⊤r̂t

(up) + p̃(dn)⊤r̂t
(dn)+

λ̃LS δ̂LS
t + λ̃SP δ̂SP

t

]
(3-29)

s.t. e⊤(Mĝt − δ̂SP
t ) = e⊤(D̂t − δ̂LS

t ) (3-30)

− F̃ ≤ B̃(Mĝt + δ̂LS
t − D̂t − δ̂SP

t ) ≤ F̃ (3-31)

Nr̂t
(up) = R̂

(up)
t (3-32)

Nr̂t
(dn) = R̂

(dn)
t (3-33)

ĝt + r̂t
(up) ≤ G̃ (3-34)

ĝt − r̂t
(dn) ≥ 0 (3-35)

r̂t
(up) ≤ r̄(up) (3-36)

r̂t
(dn) ≤ r̄(dn) (3-37)

ĝt, r̂t
(up), r̂t

(dn), δ̂LS
t , δ̂SP

t ≥ 0. (3-38)

In (3-21)–(3-38), the objective function of the upper level problem (3-21)
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comprises the sum of the actual operating cost, the cost of scheduled reserves,
and the implemented load-shed and renewable spillage costs for all periods
within the dataset, i.e., for t ∈ T. In the upper level, constraints (3-22)–
(3-24) define the forecast model. Note that all periods are coupled by the
vector of parameters θ = [θ⊤

D, θ
⊤
R(up) , θ

⊤
R(dn) ]⊤, which do not depend on t. These

parameters define the forecast model that will be applied to each t for demand,
as per D̂t in (3-22), for up reserve requirements, as per R̂(up)

t in (3-23), and
for down reserve requirements, as per R̂(dn)

t in (3-24). The forecast models are
defined by functions ΨD, ΨR(up) , and ΨR(dn) that transform parameters and
the historical data on load and reserve requirement forecasts. For the sake
of simplicity and didactic purposes, in this work, we assume affine regression
models. The reserves are parts of the forecast vector ŷt because the method
optimizes a model for them. However, reserves’ historical data need not be in
yt, since, typically, the choice of reserves in each period is not based on past
values of reserves.

Constraints (3-25)–(3-28) together with the objective function (3-21)
particularize Ga from (3-1). They assess the ex-post operating cost (first term,
cT

t gt, and the last two terms, λLS
t δLS

t +λSP
t δSP

t ) of the actual dispatch given the
ex-ante planned generation, g∗

t , and allocated up and down reserves, r(up)∗
t and

r
(dn)∗
t , defined by the second level (3-29)–(3-38). Constraint (3-25) accounts

for the ex-post energy balance constraint, where total generation meets total
observed load data. The left-hand side of the constraint is the sum of generated
energy in all buses, with Mgt resulting in the nodal generation injection vector
(total generation per bus). δSP

t represents the nodal generation spilled per
bus (positive load imbalance decision). The right-hand side of the constraint
accounts for the net-nodal load vector (observed net-demand vector Dt). δLS

t

represents the decision vector of nodal load-shed (negative load imbalance
decision). Finally, constraint (3-26) limits the flow of energy through each
transmission line to pre-defined bounds and (3-27) limits the ex-post generation
to respect the operation range defined by the ex-ante planned generation, g∗

t ,
and allocated up and down reserves, r(up)∗

t , r
(dn)∗
t . Constraint (3-28) ensures the

positiveness of slack, generation, and reserve requirement variables.
The planning policy defines variables g∗

t , r(up)∗
t , and r

(dn)∗
t under the

conditional information available in vector xt. These variables should respect
the optimality of the market’s or system operator’s ex-ante scheduling (or
planning policy), as per (3-29), based on the vector of load forecasts, D̂t, and
vectors of reserve requirements, R̂(up)

t and R̂
(dn)
t , for the next period (e.g.,

hour). Again, it is relevant to note that this planning policy may differ from
the actual ex-post implemented policy (based on the observed load data Dt),
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resulting in the actual operating cost considered in the objective function of
the first level (3-21). Within this context, constraints (3-29)–(3-38) detail the
second-level problem, which represents the optimization that takes place in
the planning phase at each period to define a generation and reserve schedule
for the next period. Thus, these constraints are particularizing the general
model, Gp in (3-3). In the proposed closed-loop framework, (3-29) is key.
It allows us to define, within a problem that seeks the best forecast model
aiming to minimize the ex-post operation cost, the objective of an ex-ante
scheduling problem minimizing energy and reserve costs for a conditioned
load forecast (D̂t) and reserve requirements (R̂(up)

t and R̂
(dn)
t ). Constraints

(3-30) and (3-31) are similar to (3-25) and (3-26). Expressions (3-32) and
(3-33) ensure that the total reserve requirements, R̂(up)

t and R̂
(dn)
t , which are

considered as parameters for the lower-level problem, must be allocated among
generators in the form of up and down reserves, r̂t

(up) and r̂t
(dn), lower-level

decision variables. Constraints (3-34) and (3-35) limit the scheduled generation
and reserves range (up and down) to generators’ physical generation limits.
Constraints (3-36) and (3-37) limit the maximum amount of reserves that can
be allocated in each generating unit, and (3-38) ensures positiveness of the
generation and reserve decision vectors of the second level. We highlight that
Ga and Gp are cost functions represented by linear programs. Although their
objective functions have the same structure, their above-described constraints
are different.

The proposed application-driven framework provides system operators
with the flexibility to either jointly optimize the load forecast and the reserve
requirements or only one of them. Additionally, this model is powerful because
the load forecasts and both the size and location of reserve requirements
are defined in the best way possible to maximize the ex-post performance
of the operation. While the lower level, (3-29)–(3-38), ensures an ex-ante
(planning) generation schedule and reserve allocation compatible with the
system operator’s information level (best schedule given the previous hour
conditional forecast for t), the upper level selects the parameters of the forecast
model aiming to minimize the average ex-post (assessment/implementation)
operating cost for a large dataset. In this sense, depending on the network
details considered in the assessment part of the model, it also helps in
mitigating reserve deliverability issues associated with ad hoc procedures used
in industry practices.

In the next section, we will compare a few variants of this problem by
optimizing all or some of the parameters θD, θR(up) , and θR(dn) . As described
in the contributions section, two novel methods are the one that optimizes all
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parameters and the one that gets a fixed θD and only optimizes reserves (θR(up) ,
and θR(dn)). The case of fixed reserves and optimized θD will also be presented
but is not particularly meaningful in practice.

3.8
Case Studies

This section presents case studies to demonstrate the methodology’s
applicability and how the closed-loop framework can outperform the classic
open-loop scheme in multiple variants of the load forecasting and reserve sizing
problem defined in Section 3.7. First, we show that the Heuristic method
of Section 3.6.2 can achieve close to optimal solutions in a fraction of the
time required by the Exact method of Section 3.6.1. Second, we study the
estimated parameters’ and forecasts’ empirical properties and contrast them
with the classical least squares (LS) estimators. After that, we briefly explore
how the method can estimate a reserves model with features. Moreover, we
apply the method to highlight the relationship between load-shed cost and
the estimated parameters. Finally, we show that the heuristic algorithm finds
good quality local-optimal parameters systematically outperforming the LS
open-loop benchmark for instances far larger than those solved in previously
reported works tackling closed-loop bilevel frameworks. We used the same Dell
Notebook (Intel i7 8th Gen with 4 cores at 1.99Ghz, 16Gb RAM) for all studies
except when otherwise noted.

3.8.1
Power systems cases and datasets

We consider multiple power system cases throughout this section. The
first is a single bus system defined by us, with 1 zone, 1 load (with a long-
term average of 6) and 4 generators (with capacities 5, 5, 2.5, 2.5 and costs
1, 2, 4, 8). The other three are typical test systems based on realistic networks
used by the power system community, namely, “IEEE 24bus rts” (38 lines, 33
generators, 17 loads, 4 zones), “IEEE 118 bus” (186 lines, 54 generators, 99
loads, 7 zones) and “IEEE 300 bus” (411 lines, 69 generators, 191 loads, 10
zones). The base datasets were obtained from PG-LIB-OPF [195]. The zone
definition is standard for the 24 bus case. For the 118 and 300 bus cases, we
used the zones defined by [196]. We also considered very large cases, with
thousands of buses, by connecting copies of the 300-bus system. Finally, we
consider realistic power systems with more than 6000 buses.

Henceforth, we will refer to the test systems by their number of buses. We
only considered loads in buses with positive demand in the original files. We
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performed some modifications in the case data: all flow limits were set to 75% of
their original rate; we modified the demand values of the cases 24, 118 and 300
by the factors: 0.9, 1.3 and 0.9, respectively. These modifications were made
to stress the systems. Deficit and generation curtailment costs were defined,
respectively, as 8 and 3 times the most expensive generator cost. All generators
were allowed to have up to 30% their capacity allocated to reserves, and their
reserve allocation costs were set to 30% their nominal costs. We only considered
the linear component of the generators’ costs in all instances. In all datasets,
we used demand values as the long-term average of AR(1) processes for each
bus. The AR(1) coefficients were set to 0.9 and the AR(0) coefficients were
set so that we get the desired long-term averages. For the sake of simplicity,
load profiles were generated independently. The coefficient of variation of all
simulated load stochastic processes was 0.4. Negative demands were truncated
to zero, although they could represent an excess renewable generation.

3.8.2
Studied models and notation

In most of the following sections, we will consider simple forecast models
so that we can detail experiment results clearly. Therefore, unless otherwise
mentioned, the model used to forecast loads in each node is the following:

D̂t = ΨD(θD, xt) = θD(0) + θD(1)Dt−1, (3-39)

For the single bus case, we set the “real", or population, values as θD(0) = 0.6
and θD(1) = 0.9, resulting in the long-term average θD(0)/(1 − θD(1)) = 6,
defined in section 3.8.1. Note that such a choice of coefficients ensures that
the input process is stationary and ergodic (see, e.g., [190]), thereby satisfying
the condition in Theorem 2. Because the stochastic model for loads, (3-39), is
homoscedastic, we set the reserve models to AR(0) – i.e., a number that does
not depend on previous values of reserves – since it is customary to set the
reserves just in terms of variability of loads:

R̂
(up)
t = ΨR(up)(θR(up) , xt) = θR(up)(0), (3-40)

R̂
(dn)
t = ΨR(dn)(θR(dn) , xt) = θR(dn)(0). (3-41)

3.8.3
Exact vs heuristic method comparison

In this first experiment, we aim to compare the exact and the heuristic
methods to check the quality of the latter for instances in which the exact
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method is capable of reaching global optimal solutions. To that end, we
consider the single-bus test system.

We started by solving 10 instances for each T ∈ {15, 25, 50, 75}. All
instances solved with the exact method converged within a gap lower than
0.1% using the Gurobi solver or stopped after two hours. The heuristic method
was terminated when the objective function presented a decrease lower than
10−7 between consecutive iterations. We used a Nelder-Mead implementation
found in [197]. To compare the results, we plotted the ratio of objective values
in Figure 3.2(a) and the time ratio in Figure 3.2(b). We can observe that
the heuristic method achieves high-quality solutions for almost all instances.
Although the exact method is competitive for T ∈ {15, 25}, the heuristic
method is much faster with an average solve time of 4.4s, for T = 50, and
5.9s, for T = 75, compared to 1200s and 6670s for the exact method. Four
instances with T = 75 did not converge with the exact method after two hours.

Next, we further analyze the shape of the objective cost, Ga in (3-1), as
a function of the parameters, θ, to better understand how good the heuristic
solutions can be. Given one dataset with 250 points, we fixed the demand
autoregressive parameters to the LS estimation and plot in R3 the cost as a
function of the reserve requirement parameters. Two views of this function
are presented in Figure 3.3 (a) and (b). We also plot the cost as a function
of the AR(0) and AR(1) coefficients of the demand forecasting model, in this
case, the reserve requirement parameters were fixed to the exogenous values
of +/-1.96 standard deviations of the LS estimation of load forecast. This is
presented in two views in Figure 3.3 (c) and (d).

We can note that both functions are reasonably well-behaved and suited
for local search algorithms, even though the functions are non-convex. This is a
relevant feature supporting the choice for our heuristic approach as previously
described at the end of Section 3.6.2. We also note a smoothing effect due to
the average in the objective function [153]. Therefore, it is expected to have
more well-behaved functions as the sample size grows.

3.8.4
Asymptotic behavior and biased estimation

Now we focus only on the heuristic method to analyze how the estimates
behave with respect to the dataset size variation. We will see that they actually
converge in our experiments. Moreover, we empirically show through out-of-
sample studies that using the closed-loop model is strictly better than the
open-loop one provided we have a reasonable dataset size in the training step.
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(3.2(a)) In-Sample objective value comparison

(3.2(b)) Running time comparison

Figure 3.2: (a) Objective of Heuristic method divided by the objective of Exact
method for the same datasets. *Four problems not considered for T = 75: the
exact method found no solution in the given time. (b) Time to solve the same
problem (in log scale): Heuristic method divided by Exact method.

It will be possible to see that a method with too many parameters might
overfit the model for reduced dataset sizes and not generalize well enough.
From now on, we will use the following nomenclature and color code to refer
to the different models:

– LS-Ex (red): This is the benchmark model representing the classical
open-loop approach. It uses LS to estimate demand and an exogenous
reserve requirement.
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Figure 3.3: Training cost as a functions of optimization parameters. (a) and
(b): fixed load AR coefficients, optimizing reserves θR(up)(0), θR(dn)(0). (c) and
(d): fixed reserves, optimizing load AR coefficients θD(0), θD(1). A dataset with
250 points was used to evaluate the function values in a grid with resolution
0.05 units.

– LS-Opt (blue): This is a partially optimized model, where least squares
are used to estimate demand and only reserve requirements are optimized
with the application-driven framework.

– Opt-Ex (yellow): This is also a partially optimized model, where demand
is optimized, whereas reserve requirements are still exogenously defined.
This model is not particularly meaningful in practice. We show it in some
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studies for completeness.

– Opt-Opt (green): This is the fully optimized model, where both demand
forecast and reserve requirements are jointly optimized.

Both (closed-loop) methods LS-Opt and Opt-Opt are novel contributions
proposed in this work, to be contrasted with the benchmark (open-loop)
method, LS-Ex. For didactic purposes, in all cases tested in this section, up
and down reserve requirements were defined as +/- 1.96 standard deviations,
respectively, of the estimated residuals from the LS demand forecast. Note,
however, that other exogenous ad hoc methods could be used [139].

We empirically compare and analyze the convergence of the four demand
and reserve requirement forecast models mentioned above. We varied the
dataset size used in the estimation process from 50 to 1000 observations. For
each dataset size, we performed 100 trial estimations, with different datasets
generated from the same process, to study the convergence. To evaluate the
out-of-sample performance of each one of the 100 estimates for each dataset
size, we compute the objective function, Ga in (3-1), for a single fixed dataset
with 10, 000 new observations (generated with the same underlying process but
different from all other data used in the estimation processes). In the following
plots, lines represent mean values among the 100 estimated costs with the in-
sample or out-of-sample data, and shaded areas represent the respective 10%
and 90% quantiles.

The average operation cost for each dataset size is presented in Figure
3.4. The vertical axis shows in-sample costs, while the horizontal axis shows
the dataset size used for the estimation procedure. It is possible to see that
the method that co-optimizes reserves requirements and demand forecasts
finds lower costs than the others. This is expected because this method
has more degrees of freedom (it is a relaxed version of the others) on the
parameter estimation and this is the objective function being minimized. Also,
as expected, the LS plus exogenous reserves requirement model finds higher
costs than the others. For the same reason, it does not allow for improvements
by the local optimization method as it can be seen as a constrained version of
the others. The other two methods are always in between and Opt-Ex is always
below LS-Opt, which shows that demand forecasting might have a larger effect
than reserve allocation in this test system.

Figures 3.5 (a) and (b) depict the same costs but in the out-of-sample
data. Hence, they measure how well the models generalize to data it has never
seen before. We can see that the models allowing more parameters to be
endogenously optimized perform much better than models with exogenously
defined forecasts. Thus, we see that the application-driven learning framework
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Figure 3.4: Average operation cost in training sample (in-sample) versus
dataset size.

works successfully on out-of-sample data when estimated with datasets larger
than 150. However, we note that these steady improvements require more
data than the classic exogenous models, as shown in Figure 3.5 (b). Between
50 and 120 points, the model with more optimization flexibility, Opt-Opt,
exhibits a more significant cost variance. This is due to excessive optimization
in a small dataset that led to overfitting and poor generalization. Note that,
in this work, we did not consider any regularization procedure to avoid this
issue. However, our optimization-based framework is suitable for well-known
shrinkage operators [198] that can be readily added in the objective function
(3-1).

Figure 3.6 shows how the estimated parameters behave as functions of
the estimation dataset size. In Figure 3.6 (a) and (b) we can see that the load
model parameters are indeed converging to long-run values. It is also clear
to see the bias in those parameters. The constant term is greatly increased
while the autoregressive coefficient is slightly reduced. Ultimately this leads
to a larger forecast value, which can be interpreted as the application risk
adjustment due to the asymmetric imbalance penalization costs (load-shed is
much higher than the spillage cost). Thus, the Opt-Opt model will do the best
possible to balance these costs, thereby prioritizing the load-shed by increasing
the forecast level. The fixed reserves model (Opt-Ex) is less biased because the
fixed reserves constrain how much the load model can bias due to the risk of
not having enough reserves to address lower demand realizations. Note that
the red (LS-Ex) is on top of the purple (LS-Opt) since both use the same LS
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(3.5(a)) Starting from dataset size 200.
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(3.5(b)) Dataset size from 50 to 200.

Figure 3.5: Out-of-sample average operation cost versus (in-sample) dataset
size. Lines represent the average of the 100 estimation trials. Shaded areas
represent the 10% and 90% quantiles. All trials are evaluated on a single out-
of-sample dataset with size 10, 000 observations.

estimates for demand, which exhibits the lowest variance.
In Figure 3.6 (c) and (d), we see that the Opt-Opt model greatly increases

the downward reserve and decreases the upward reserve, both consistent with
the change in the demand forecast parameters. Closed-loop estimation of only
reserves led to increased up reserves that are the most expensive to violate,
while downward reserves are mostly unaffected, the latter might be an artifact
of the estimation model that uses the open-loop estimation as a starting point.
The Opt-Opt model is limited to 3 because that is the maximum reserve that
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(3.6(a)) θD(0), from (3-39)
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(3.6(b)) θD(1), from (3-39)

200 400 600 800 1000

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Dataset size

R
es

er
ve

 U
p

(LS/Opt)-Ex
LS-Opt
Opt-Opt

(3.6(c)) θR(up)(0), from (3-40)
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(3.6(d)) θR(dn)(0), from (3-41)

Figure 3.6: Estimated parameters versus dataset size. Lines represent the
average of the 100 estimation trials. Shaded areas represent the 10% and
90% quantiles. (a) and (b) Load coefficients, the models LS–Ex and LS–
Opt coincide, thereby are presented as LS–(Ex/Opt). (c) and (d) Reserve
coefficients The models Ls–Ex and Opt–Ex coincide, thereby are presented
as (LS/Opt)–Ex.

can be allocated (30% of the generators’ capacity).
To highlight the bias on load forecast we present, in Figure 3.7 (a), a

histogram of deviations: error := realization − forecast. Negative values
mean that the forecast value was above the realization. The LS estimation
leads to an unbiased estimator, seen in the red histogram centered on zero. On
the other hand, the forecast from the fully endogenous model is clearly biased,
as it consistently forecasts higher values than the realizations. This fact is
corroborated by the cumulative distribution functions displayed in Figure 3.7
(b).

3.8.5
A reserves model with features

This experiment aims to show that it is also possible to consider a
reserves model with features within the proposed scheme, i.e., conditioned
to external information being dynamically revealed to the system operator.
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(3.7(a)) Two histograms are shown, the third color is their intersection
(LS–Ex and LS–Opt coincide).
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(3.7(b)) Accumulated Probability – out of the four models, three are
shown here (LS–Ex and LS–Opt coincide).

Figure 3.7: Forecast error (observation – forecast) in a histogram, comparing
fully optimized model with least squares estimation. Negative values mean
forecast was larger than actual realization.

There are examples of works in the literature that considered the load to be
heteroscedastic [172]. Hence, we will study here a simple formulation of demand
time series with time-varying variance: We considered an exogenous variable
Et that follows an autoregressive process of order one, for which the noise term,
εt, has zero mean and variance σ2

E, (3-42). The variance of the demand process
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is the square of Et, as shown in (3-43).

Et = ϕ(0) + ϕ(1)Et−1 + εt, εt ∼ N(0, σ2
E), (3-42)

Dt = θD(0) + θD(1)Dt−1 + ϵt, ϵt ∼ N(0, E2
t ), (3-43)

Formulations in (3-42) and (3-43) were only used to generate synthetic input
data for this case study. In this study, we did not modify the demand forecast
model (3-39) that is used to specify (3-22). On the other hand, we allowed
for features in the reserve sizing, that is, the reserve will vary with external
information. This time dependency will be considered through contextual
information (features, explanatory variables). As a driver for demand variance
changes, Et is reasonable contextual information for estimating dynamic
reserve margins. Thus, we replaced (3-40) and (3-41) that specify (3-23) and
(3-24) by the following models for the reserve requirements, (3-44) and (3-45):

R̂
(up)
t = ΨR(up)(θR(up) , xt) = θR(up)(0) + θR(up)(1)Et, (3-44)

R̂
(dn)
t = ΨR(dn)(θR(dn) , xt) = θR(dn)(0) + θR(dn)(1)Et. (3-45)

The results of this experiment are depicted in Figure 3.8. We refer to
the model from the previous sections as simple reserves model, Figure 3.8 (a),
and the model defined here as reserves model with features, Figure 3.8 (b). The
system cost was clearly reduced by considering features in the reserves for both
Opt-Opt and LS-Opt models. In the case with features, the Opt-Opt model
gain over the LS-Opt is significantly reduced because the reserve sizing method
given by (3-44) and (3-45) is able to capture asymmetries by incorporating the
variable Et, therefore this reduces the pressure for an increased bias on demand
forecast. Moreover, the demand forecast models do not depend explicitly on
Et for both Opt-Opt and LS-Opt. Hence, in these instances, the reserve sizing,
dependent on Et, is able to optimize up- and down-reserve requirements that
incorporate most of the asymmetries on the cost function even with a demand
forecast with zero bias. This is a relevant insight that the proposed framework
provides.

3.8.6
Reserves and demand forecast as a function of the load-shed cost

This section aims to spotlight the dependency of the estimated parame-
ters on the deficit cost, which is the largest violation penalty in this problem.
We varied the deficit cost between 15 and 100 and estimated parameters with
one single dataset with 1, 000 observations.
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(3.8(a)) Simple Reserves Model
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(3.8(b)) Reserves Model with Features

Figure 3.8: Variance driven by exogenous variable. Lines represent the average
of the 100 estimation trials. Shaded areas represent the 10% and 90% quantiles.

Figure 3.9 depicts the up and down reserves and steady-state demand
(θD(0)/(1 − θD(1)). We added the solid line in red, Demand LS, to represent
the steady-state demand and dashed red, Reserve Ex, to show the obtained
reserve requirement from the residue of the LS estimation model. So, as these
two values are exogenously calculated, they do not vary with the load-shed
cost. The solid green line, Demand Opt–Opt, shows an increasing bias as the
load-shed cost grows, corroborating the expected behavior. The dashed green
line also shows that the best response is to increase reserve levels as the load-
shed cost grows. The dashed blue lines are the reserve margins around the solid
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LS-based demand (red line) and they are also clearly affected by the load-shed
cost.
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Figure 3.9: Long-run averages and reserve margins, in units of energy, as
functions of deficit cost

3.8.7
Large-scale optimization

In this experiment, we apply the closed-loop estimation methodology
to larger power system networks. As in the previous section, we focus our
attention on the three models: LS-Ex, LS-Opt and Opt-Opt. Our primary
goal in this case study is to demonstrate that the methodology is capable
of consistently obtaining high-quality solutions that significantly improve the
standard procedure in larger systems. For each of the 24, 118 and 300 bus
systems, we considered 100 datasets, each of which with 1, 000 observations
for the training stage. Each instance considered a time limit of 15 minutes for
training, i.e., for solving (3-21)–(3-38) with T = 1, 000. For the testing stage,
we evaluated the out-of-sample cost using a common set of 10, 000 observations
for each of the 100 obtained solutions. In Table 3.1, we present the mean and
standard deviation of the 100 estimates of the operation costs for both the test
and training stages.

As can be seen in Table 3.1, some training times are slightly above
15 minutes because of problem-building time. Compared to the benchmark
method, LS-Ex, we can see improvements of 5% in the 24 bus system and 3%
in the 118 system. In the 300 bus test case, we have a 4.8% improvement by
endogenously sizing reserves and an 11.4% improvement by jointly estimating
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the closed-loop demand forecast and reserve size. The latter case hit the time
limit frequently, hence results could be even better with more time.

System Model Test Cost($) Train Cost ($) Train Time (s)
Mean Std Mean Std Mean Std

LS-Ex 414.70 1.14 397.01 4.39 0.00 0.00
24 LS-Opt 398.48 0.69 378.49 93.00 450.81 90.35

Opt-Opt 398.20 1.04 376.35 14.04 643.89 11.16
LS-Ex 2956.01 11.33 3163.74 3.78 0.00 0.00

118 LS-Opt 2829.86 4.20 3041.28 4.86 639.87 4.97
Opt-Opt 2815.85 4.57 3029.93 13.20 911.43 12.37
LS-Ex 7697.25 40.78 7646.84 26.09 0.00 0.00

300 LS-Opt 7329.44 36.62 7278.88 18.75 803.15 34.08
Opt-Opt 6820.47 37.67 6787.65 294.53 923.38 25.12

Table 3.1: Results for the 24, 118 and 300-bus systems

3.8.8
Scalability of the proposed method

Although many systems are frequently represented with networks with a
few hundred buses—for instance, [199] considers 255 buses in Peru and [200]
considers 140 buses in Panama—we further analyze the algorithm’s scalability
and its consequent applicability to an even broader range of very large power
system networks. We created instances with the number of buses ranging from
600 to 6000. These instances were created by connecting multiple copies of the
300 bus case. The optimization was performed on an Intel Xeon E5-2680 with
12 cores at 2.50GHz, 128Gb RAM. We generated a single training dataset with
1, 000 observations for each instance and optimized each problem considering
four- and twelve-hour time limits. Then, we evaluated the solutions obtained
with each method and computational time limit with a common dataset of
10, 000 out-of-sample observations.

The results, in terms of Test and Train cost, are depicted in Table 3.2.
It is clear that the proposed methods (LS-Opt and Opt-Opt) consistently
outperformed the least-squares benchmark (LS-Ex) despite reaching the time
limit for training. Moreover, the co-optimization scheme (Opt-Opt) was again
better than the other two methods (LS-Ex and LS-Opt) in both in-sample and
out-of-sample evaluation. Also, the method performed well, generalizing from
training to testing. For the larger systems, we see smaller relative improvements
in the cost functions. This is due to (i) the increased dimension of linear
programs solved in each iteration, and (ii) the number of parameters, which
increases with the system size. Reasons (i) and (ii) imply that, for a given
computational budget, fewer iterations are run in the training stage, possibly
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yielding sub-optimal solutions. Thus, it is conceivable that much better results
could be obtained with more time (or processing capacity), as the 12-hour runs
lead to improvements that are typically more than three times those obtained
with 4-hour runs. Although we were limited to 12 cores, one could use one core
(or more) per observation in the training dataset, leading to massive speed-ups.
It is worth mentioning that, in all cases, the LS estimation found coefficients
very close to the true ones. This fact, together with the gains shown in Tables
3.1 and 3.2 for many instances of different sizes, indicate that the forecast
bias introduced by our methodology is consistent in promoting an improved
operation. Notably, relevant gains were found even in cases of very large-scale
power systems. For instance, for the 3000-bus system, in this simulation run
the gain was 13% with the 12-hour time limit. Therefore, the results provide
strong evidence that our method is capable of producing meaningful gains in
practice.

Test Train
Buses Time Opt-Opt LS-Opt LS-Ex Opt-Opt LS-Opt LS-Ex

(h) ($) (%) ($) (%) ($) ($) (%) ($) (%) ($)
600 4 15256 21.51 16741 13.87 19437 14898 22.73 16552 14.16 19281
600 12 15226 21.66 16739 13.88 19437 14873 22.86 16563 14.10 19281

1200 4 35261 26.38 40103 16.28 47899 34985 26.87 39994 16.41 47843
1200 12 35158 26.60 38843 18.91 47899 34842 27.17 38787 18.93 47843
1800 4 60043 18.61 69355 5.98 73770 61033 17.97 69915 6.03 74405
1800 12 53378 27.64 62786 14.89 73770 54294 27.03 63224 15.03 74405
2400 4 81018 20.23 94675 6.78 101561 78686 19.57 91278 6.70 97832
2400 12 80330 20.91 93739 7.70 101561 77969 20.30 90413 7.58 97832
3000 4 120389 5.18 125465 1.19 126972 119214 5.27 124328 1.20 125841
3000 12 110302 13.13 122560 3.47 126972 109231 13.20 121382 3.54 125841
3600 4 149141 3.51 153484 0.69 154558 147110 3.50 151404 0.68 152439
3600 12 136479 11.70 150303 2.75 154558 134664 11.66 148332 2.69 152439
4200 4 177451 1.72 179785 0.43 180555 174395 1.70 176651 0.43 177406
4200 12 165963 8.08 177444 1.72 180555 162820 8.22 174309 1.75 177406
4800 4 206358 1.22 208300 0.29 208910 209816 1.28 211927 0.29 212546
4800 12 197707 5.36 206539 1.13 208910 201294 5.29 210197 1.11 212546
5400 4 232071 1.05 233992 0.23 234524 228660 1.23 231018 0.21 231514
5400 12 225203 3.97 232658 0.80 234524 222018 4.10 229769 0.75 231514
6000 4 260427 0.96 262493 0.18 262963 262049 0.99 264198 0.18 264668
6000 12 255384 2.88 261500 0.56 262963 257062 2.87 263118 0.59 264668

Table 3.2: Results for very large-scale systems. LS-Ex is the reference, only
costs in $ are shown. For both Opt-Opt and LS-Opt costs are shown in $ and
their improvement compared to LS-Ex is shown in %.

3.8.9
Tests on very large systems

In this section, we emulate a realistic usage of the method, by testing
it in realistic large-scale instances. The ones marked with “rte” represent the
French grid in 2013, using large-scale instances based on real systems [201].
The ones marked with “pegase” are synthetic but based on the European grid
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[202]. All these instances are available in [195]. In this section, all system data
in the test cases are considered without any modifications, except for the loads
that come from a AR(1) process analogous to the previous sections. Moreover,
we limited the computing time to 30 minutes so that the method can be used
for dynamic reserve sizing and load forecast in hour-ahead dispatch. Note that
using the method in other time scales, such as day-ahead dispatch, would also
have great potential to benefit real systems around the globe. Even systems
with slower dynamics running week-ahead dispatch could be benefited. The
number of observations used for training was 600, and the number of out-
of-sample observations for testing was 10000. We used larger servers with 64
processes in parallel and 1024 Gb of RAM to perform the computations, all
instances are available in Amazon Web Services, AWS, [203].

Test Train
Dataset Opt-Opt LS-Opt LS-Ex Opt-Opt LS-Opt LS-Ex

($) (%) ($) (%) ($) ($) (%) ($) (%) ($)
6468-rte 19870 8.56 20026 7.85 21731 20278 8.50 20462 7.67 22163
6470-rte 25579 9.21 25849 8.25 28174 24004 10.38 24235 9.52 26785
6495-rte 28726 9.77 28988 8.94 31835 28400 10.52 28666 9.68 31739
6515-rte 34397 2.01 34557 1.56 35103 33757 2.01 33874 1.55 34354
9241-pegase 76438 12.89 76662 12.62 87750 75315 10.31 75509 10.08 83973
13659-pegase 82608 7.97 82908 7.63 89760 83930 7.50 84196 7.21 90737

Table 3.3: Results for very large-scale systems. LS-Ex is the reference, only
costs in $ are shown. For both Opt-Opt and LS-Opt costs are shown in $ and
their improvement compared to LS-Ex is shown in %.

Results are shown in Table 3.3. The number in the dataset name
represents the number of buses in the system. These results provide even
stronger evidence that our method is capable of producing meaningful gains
in practice.

3.9
Conclusions

A mathematical framework for application-driven learning is proposed
building upon the ideas of bilevel optimization. Asymptotic convergence is
demonstrated, and we show that the proposed solution converges to the best
forecast model on average for the selected application. Two solution techniques
are presented: one exact, which is based on the KKT conditions of the second-
level problem, and one heuristic, which scales well for very large instances
while showcasing relevant gains in comparison to the benchmark. We apply
the general application-driven framework to jointly estimate the parameters
of a load and dynamic reserve requirements forecast model in a closed-loop
fashion. Following the same framework, we also presented a novel (closed-
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loop) method to estimate dynamic reserves if the demand forecast is fixed.
The proposed methods are compared with the classical sequential open-loop
procedure (benchmark), where the forecast models are estimated based on least
squares and used in the decision-making process. Regarding our application
case, the proposed framework finds support in current industry practices, where
ad hoc procedures are implemented to bias load forecasts aiming to reduce risks
empirically. The application of our model provides not only a theoretically-
grounded understanding of such procedures but also a flexible computational
tool for testing current practices and jointly determining the optimal bias and
reserve requirements.

The reported numerical experience allows highlighting the following main
empirical results and insights: 1) There exists an optimal bias in the load fore-
cast maximizing the performance of a system or market operator in the long
run. Moreover, the optimal bias in the load forecast is not disconnected from
the optimal reserve requirements (reserve sizing problem). 2) Reserve require-
ments sizing and location are intrinsically dependent on the load-shed cost
and system’s characteristics, and a policy to dynamically allocate them can
be optimally determined by our framework even in the case where we impose
an exogenous estimate for the demand forecast (e.g., least squares or other
methods). 3) Our model can endogenously define the optimal reserve sizing
across the network by defining zonal reserve requirements that will best per-
form given the system operator’s description of the network. 4) We show for
realistic test systems, e.g., IEEE 300-bus system, that both models (optimiz-
ing only reserves and co-optimizing load forecast and reserves) were capable
of significantly improving the long-run operation cost. Moreover, we demon-
strated that the method scales to even larger power systems with thousands
of buses and leads to consistent improvements in the long-run operation costs
even with limited computational resources. Finally, we empirically proved that
the method scales well and is able to handle large-scale realistic power systems,
ranging from 6,468 to 13,659 buses, with a limited training time of 30 min-
utes resorting to cloud computing. Consequently, the method might be well
fit for realistic hour-ahead planning besides day- and week-ahead. 5) We show
that the proposed heuristic solution method can provide high-quality solu-
tions in reasonable computational time. This is mostly due to the selected
approach, which i) initializes the search method with the traditional least-
square estimates, thereby only moving to another point if an improvement
in performance is found, and ii) allows the estimation problem to be decom-
posed per observation and the second-level problem to be solved till global
optimality in polynomial time. Additionally, it also leverages mature linear
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programming-based warm-start technologies and algorithms to scale up the
performance in larger instances. This pattern is consistently observed in all
test systems, corroborating the proposed framework’s effectiveness in finding
improved estimates for both load and reserve requirements.

The proposed framework is fairly general, but we focused on right-hand
side uncertainty and linear models as this was the relevant setting for the
reserve requirement forecasting problem. Possible extensions of this work could
aim at generalizing this setting. Indeed, the exact method would work for
objective-function uncertainty and for non-linear models with strong duality
like many conic programs. The heuristic method is even more flexible, it
could accommodate uncertainty anywhere in the models, and it could be
used in many non-linear (even integer) problems. Also, the heuristic method
can be benefited from online optimization approaches and warm starts based
on the solution of a previous execution of the algorithm with similar data
as would occur in a real-time application. This could bring relevant gains
to the optimization of sequential hour-ahead operation. Other aspects of
estimation procedures to be explored include regularization with shrinkage
operators [198], or the addition of LS estimates in the objective [157] with a
penalizing coefficient to provide a balance between classical and application-
driven forecasts. Moreover, it would be interesting to conduct experiments
to verify the empirical performance of various statistical models (ψ), such as
vector autoregressive models. Proving convergence conditions for many of the
aforementioned changes in the model would provide nice contributions to the
literature.
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4
Long-term Hydrothermal Bid-based Market Simulator

Simulating long-term hydrothermal bid-based markets considering
strategic agents is a challenging task. The representation of strategic agents
considering inter-temporal constraints within a stochastic framework brings
additional complexity to the already difficult single-period bilevel, thus, non-
convex, optimal bidding problem. Thus, we propose a simulation methodology
that effectively addresses these challenges for large-scale hydrothermal power
systems. We demonstrate the effectiveness of the framework through a case
study with real data from the large-scale Brazilian power system. In the case
studies, we show the effects of market concentration in power systems and how
contracts can be used to mitigate them. In particular, we show how market
power might affect the current setting in Brazil. The developed method can
strongly benefit policy makers, market monitors, and market designers as
simulations can be used to understand existing power systems and experiment
alternative designs.

Nomenclature

Sets and Indices

I – Set of agents indexed by i.
I−i – Set of agents excluding agent i.
I∗ – Set of price maker agents, indexed by i.
JG – Set of thermal plants indexed by j.
JH – Set of hydro plants indexed by j.
JM – Set of Markov states indexed by j.
JR – Set of renewable plants indexed by j.
JU(j) – Set of hydro plants upstream of plant j, indexed by y.
JV – Set of vertices (points) representing a convex hull.
L – Set of lag in an autoregressive model, indexed by l.
S – Set of sampled scenario indices, indexed by s.
T – Set of time indices, indexed by t.
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K – SDDP Iteration index.
[K] – Set of cut indices at iteration K.
Ji – Subset of a set J with the indices of elements that belong to agent i.

Subscripts related to stage, t, and scenario, s, will be omitted for
simplicity when they are not essential for the reader’s understanding of
sampling and chronological relations.

Constants

A – Vector of inflows of all hydros, for all stages and sampled scenarios.
Cj – Operating cost of thermal j.
EQ

j – Energy quantity for an element j of a convex hull.
ER

j – Energy revenue for an element j of a convex hull.
Gj – Maximum generation of thermal j.
Pi – Price offer of agent i.
P – Vector price offer of all agents, for all stages and sampled scenarios.
P F – Forward contract price.
Qi – Quantity offer of agent i.
Q – Vector of quantity offer of all agents, for all stages and sampled scenarios.
QF – Forward contract quantity.
R̃j(ω) – Maximum generation of renewable k at scenario ω.
R – Vector of maximum generation of all renewables, for all stages and sampled
scenarios.
Uj – Maximum flow through turbine of hydro j.
Vj – Maximum storage of hydro j.
βk – Constant term of Benders cut k.
γk

j – Coefficient of state vt+1
j of Benders cut k.

δk
j,l – Coefficient of state at+1−l

j of Benders cut k.
ε̃t

i(ω) – Inflow noise coefficient of hydro j, stage t and scenario ω.
ϕj,l – Inflow auto-regressive coefficient of hydro j and lag l.
πn – Spot price at system n.
Π – Vector of spot prices, for all stages and sampled scenarios.
Mµ|m – Transition probability from Markov state µ to state m.
M – Vector of transition probabilities matrices, for all stages.

Indexing vectors in calligraphic (P ,Q) by i stands for the sub-vector
where elements belong to agent i and by −i stands for the sub-vector where
elements belong to all agents except i.
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Optimization Variables

at
j – Inflow at hydro j, stage t. a[t] stands for the vector of all inflows before

stage t.
a[t] – Vector of inflows at all hydros, for all stages before stage t.
e – Energy offer
gj – Generation of thermal j.
q – Bid quantity accepted in a dispatch.
rj – Generation of renewable j.
uj – Turbine flow at hydro j.
vt

j – Storage at hydro j, at the beginning of stage t, and at the end of stage
t− 1.
vt – Vector of storage at all hydros, at the beginning of stage t, and at the end
of stage t− 1.
zj – Spill flow at hydro j.
α – Epigraph variable for Benders cuts.
λj – Convex hull value for vertex j.

Indexing vectors in bold (a,v) by i stands for the sub-vector where
elements belong to agent i.

Functions and Functionals

Eω[·] – Expected value over the random variable ω.
B̃(·, ·) – Future cost function as a function of states and uncertainty.
Λ̃(e, ω) – Revenue as a function of the energy bid and the scenario ω.
ρ(·) – Hydro generation as a function of turbine flow. It can also be a function
of volume.
| · | – Cardinality of a set

4.1
Introduction

Hydropower is one of the most widely used energy sources around
the globe, the most used renewable energy source responsible for over four
thousand TWh per year according to the International Energy Agency [204].
Many countries rely on hydro plants for a meaningful share of their generation,
but some countries have hydropower as their main energy source, for instance,
Brazil, New Zealand, Colombia, and Norway.
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The operation of systems with large penetration of hydropower is very
challenging since reservoirs are storage devices that create a strong temporal
coupling and inflows are random variables. The framework of Multi-Stage
Stochastic Optimization (MSO) is the most used framework to handle this type
of problem and the key algorithm is Stochastic Dual Dynamic Programming,
SDDP, which was motivated by the centralized cost-based hydrothermal power
system operation [205].

The changes in the regulation of power systems in the last decades have
led to liberalized bid-based power markets, including the hydrothermal ones
[206]. A new variant of SDDP that combines discretization ideas from the
less scalable standard Stochastic Dynamic Programming (SDP) was developed
in [207] for the usage of market participants that want to incorporate price
uncertainty in their scheduling and bid decisions. The latter is also known as
the Markovian SDDP [208].

The bidding problem for hydrothermal power systems is reviewed in [209],
which classifies the problem into two main variants depending on whether the
bidder is a price taker or a price maker. A price taker, or non-strategic agent,
is an agent that is either too small to affect market prices with changes in
its operation or a large agent that is not willing to do so. Conversely, a price
maker, or a strategic agent, is an agent that can change prices by changing its
operation, this is also known as market power.

The review also contrasts the hydrothermal version of the problem, which
includes both time coupling and uncertainty, with the purely thermal version
of the problem, where time coupling is ignored and uncertainties are frequently
disregarded as well. The main conclusion is that the price-taker versions of the
problem are mostly solved in the literature since thermal generators will offer
their variable operating costs [210]. Meanwhile, hydro agents will bid based on
their water marginal costs, which can be viewed from the operator’s perspective
[211] or from the agent’s perspective [207].

On the other hand, the price-maker versions of the problem are much
harder to handle computationally. Simulating the behavior of one single price
maker agent has been done using Bilevel Optimization [69] where the leader
is a price maker, also known as a strategic bidder and the follower problem
represents the cost minimization market dispatch. An extension of such a
framework for the case of purely hydro strategic agents where the remainder
of the market is purely thermal was developed in the seminal work [212]. The
latter embeds a bilevel program in the SDDP algorithm but convexifies each
sub-problem to follow the assumptions of SDDP. A variant of the previous
method was proposed in [213] that handles the non-convex nature of the sub-
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problem with Lagrangian relaxation combined with SDDP. [214] uses a purely
Lagrangian decomposition scheme to solve a multistage MIP, but this time for
a price maker demand side agent. [215] simulates a hydro agent acting as a price
taker in the energy market and acting as a price maker in the reserves market.
The reserves market is represented as a simple linear curve, and the problem
is solved with SDP due to hydro commitment representation. Similarly, [216]
considers a battery that is a price taker for energy but a price maker for reserve,
the market price curve is a step function like in [212], but it is modeled as MIP
since the entire problem will be passed to a MIP solver with no decomposition.

Even more challenging is the simulation of multiple agents acting as price-
makers in a market. One key framework is game theory. For instance, in the
purely thermal case, [217] models the thermal version as a Nash equilibrium
using KKT conditions of the market operation and binary expansions to
optimize an approximation of the numerical problem with MIP solvers. This
technique was recently improved by using column constraint generation to
solve larger instances [218].

Again, the hydrothermal case is more challenging. One of the earliest
works, [219], models a small two-reservoir problem with 10 plants in a so-called
Dual Dynamic Programming scheme (different from the one of [205]) where
each sub-problem is a Cournot duopoly. Next, [220] developed a Stochastic
Dynamic Programming scheme to better consider the effect of stochastics in a
problem with 2 hydros and 23 thermals. In the two works, contracts are tested
to mitigate market power. [221] uses deterministic dynamic programming to
simulate 3 agents (but only 2 with reservoirs) in a short-term market. In the last
reference, the single-stage sub-problems are solved with an iterative scheme,
also called diagonalization in the literature. Iterative schemes that resemble
the diagonalization method are the Nikaido-Isoda Function method employed
in [222] to solve a deterministic 3-player game modeling day-ahead market
in Chile and the ADMM-based approach applied to the risk-based capacity
expansion in [223].

More recently, [224] uses a deterministic dynamic programming strategy
to simulate the behavior of two hydro reservoirs competing where each stage
requires the solution of a MIP that searches for Pareto optimal equilibrium
points. [225] solves the problem with a modified dynamic programming scheme
that accounts for uncertainty, with 15 scenarios, and solves a three-agent
subproblem iteratively to approximate the commitment decision while the
equilibrium in each stage is modeled as a MIP similar to [217]. Finally, [226]
employs Sampling Stochastic Dynamic Programming (SSDP) where stagewise
subproblems are solved via diagonalization.
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The second group of methods used to simulate the interaction between
multiple price-maker agents in a hydrothermal market does not use dynamic
programming to decompose the problem. Consequently, these methods are
used for shorter-term or medium-term analysis with very few time stages. [227]
is a seminal work in the subject, which models the multistage competition
problem in a monolithic Equilibrium Program with Equilibrium Constraints
(EPEC) derived from KKT conditions and solves a 7-stage instance with an
EPEC solver. [228] also models the problem as an EPEC and solves smaller
instances with an EPEC solver, but the 1-year problem with 4 scenarios is
solved via diagonalization. Similarly, [229] solves a 24-hour problem with 7
players by modeling an EPEC and solving it by diagonalization. A similar
strategy is presented in [230]. [231] describes each agent subproblem as a
tree-based MSO and connects them with equilibrium constraints. The case
study is a two-stage problem with 10 scenarios solved by a specialized EPEC
solver. [232] models an EPEC and solves the problems with a modified Benders
decomposition.

The above-referenced literature makes it clear that simulating multiple
agents in a hydrothermal long-term bid-based market is extremely challenging
because it is necessary to handle multiple stages, uncertainty, and the interplay
of multiple agents, which leads to non-convexities. Consequently, most works
strongly limit the number of stages, agents, or scenarios. Although some of
the above methods can handle all these features, in theory, the simulations are
done in small problems.

Therefore, the main contributions of this work are:

– Developing a methodology that can handle, at the same time, multiple
stages, agents, and uncertainty scenarios. Such methodology will be
based on solving multistage stochastic strategic bidding problems for
each strategic agent, while the coupling between agents is achieved by
an iterative procedure based on diagonalization.

– Analysing sensitivities of the competition of multiple agents with differ-
ent market shares.

– Analysing how contracts can affect the market simulations as a mitiga-
tion strategy for market power.

– Simulating competition of multiple price maker agents in the large-scale
Brazilian power system with real data.

The remainder of this work is organized as follows: Section 4.2 introduces
basic notation describing a centralized model for hydro-thermal power systems.
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Section 4.3 describes the optimization of a single price maker agent and
highlights how to incorporate contracts. Section 4.4 details an algorithm to
combine the above models to simulate long-term hydro-thermal bid-based
markets in the presence of multiple strategic agents. Section 4.5 presents case
studies to test the proposed algorithm and simulates a real case of the Brazilian
power system. Section 4.6 exposes the main conclusions.

4.2
Long-term hydro-thermal dispatch and SDDP

The hydrothermal power system dispatch is a very complex problem
because it is a multi-stage stochastic optimization problem that includes
many physical and policy-driven constraints. We present a simple yet general
optimization model that has all the main core features that are required in the
market simulator proposed in this work. We describe the problem in the form
of a Bellman recursion as in [205]. Therefore, (4-1)–(4-7) presents the objective
function and constraints of a given stage, t, and random event ωt. Index t is
omitted from most variables when easily understood from context aiming at a
lighter notation.

The first formula, (4-1), states that the future cost of stage t−1, namely
B̃t, given the states {vt, a[t−1]} and the random event ωt, is defined as the
minimization of the problem (4-1)–(4-7), whose objective function can be split
into two pieces. The first piece is the immediate cost in the form of a thermal
cost while the second piece is the expected value of the future cost B̃t+1, with
B̃|T |+1(·) = 0. The equation (4-2) represents the load balance of the system,
we have generation and energy flows on the left-hand side and the demand
on the right-hand side. The demand is considered deterministic to simplify
the developments, but everything that follows can be trivially extended to
the stochastic demand case. (4-3) describes the water mass balance: storage
at the end of stage t equals the storage at the beginning plus the net sum
of incoming water and outflows. (4-4) constrains hydro storage, turbine flow,
and spillage, while (4-5) limits the thermal generation and (4-6) limits the
renewable generation that has a stochastic upper bound depending on events
like sun and wind. Finally, (4-7) describes the inflow auto-regressive stochastic
process [205, 233].
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B̃t
(
vt, a[t−1], ωt

)
=

min
∑

j∈JG

Cjgj + Eωt+1

[
B̃t+1

(
vt+1, a[t], ωt+1

)]
(4-1)

s.t.∑
j∈JG

gj +
∑

j∈JH

ρj(uj) +
∑

j∈JR

rj = D (4-2)

vt+1
j = vt

j − uj − zj +
∑

n∈JU (j)
(un + zn) + at

j, ∀j ∈ JH (4-3)

0 ≤ vj ≤ Vj, 0 ≤ uj ≤ Uj, 0 ≤ zj, ∀j ∈ JH (4-4)

0 ≤ gj ≤ Gj, j ∈ JG (4-5)

0 ≤ rj ≤ R̃j(ωt), ∀j ∈ JR (4-6)

at
j =

∑
l∈L

ϕj,la
t−l
j + ε̃j(ωt), ∀j ∈ JH (4-7)

The application of the SDDP algorithm requires that we consider sam-
ples, {ωt

s, s ∈ S}, of the random events ωt for each t ∈ T , and rewrite of
the Bellman recursion considering approximations of the future cost function
(FCF). B̃t

K is the approximation of the FCF at stage t and iteration K. The
future cost function of t+ 1 is approximated by using an epigraph formulation
with the variable α and the Benders cuts (4-9) that belong to the set of cuts
generated up to iteration K, this set will be referred to as [K].

B̃t
K

(
vt, a[t−1], ωt

)
=

min
∑

j∈JG

Cjgj + α (4-8)

s.t.

Constraints (4-2)− (4-7)

α ≥ βk +
∑

j∈JH

(
γk

j v
t+1
j +

∑
l∈L

δk
j,la

t+1−l
j

)
, ∀k ∈ [K] (4-9)

In a very high-level description, the SDDP algorithm starts sampling a
scenario for each t ∈ T , then solves the stage subproblems in chronological
order generating a feasible solution (a candidate operation of the power
system), which is called the forward step. After that, in the so-called backward
step, problems are solved in the reverse order of time, generating cuts to
improve the representation of the FCF and, thus, propagating information
from the future to the present. These steps are repeated until a specified
stopping criterion is reached. This process is also known as policy optimization
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(or training). For details of the SDDP algorithm, the reader is directed to
[205, 234]. After convergence is declared, it is usual to proceed with a final
forward pass in which we sample scenarios s ∈ S, and for each of them, we
solve all stage subproblems in chronological order. This last procedure is known
as simulation, and it results in what we call a solution for each primal (and
dual) variable. In other words, we finish with values for each stage in T and
sample scenario in S for all optimization variables. In the case of volumes, we
describe this set of vectors of volumes as {vt,s}t∈T,s∈S. For the case of spot
prices, i.e., the dual variable associated with the load balance, (4-2), we will
represent it as Π = {πt,s}t∈T,s∈S, meaning that we have solutions for each
sampled scenario s ∈ S and stage t ∈ T .

In this section, we focused our presentation on the expected value case
of MSO for simplicity. However, everything written in the above, as well as in
the next sections, holds for other risk measures that can be represented in the
SDDP scheme [235, 236]. Another simplification in this work is to consider the
ρ()̇ function, in (4-3), as linear function [64, 208, 237], non-linear models can
also be used with approximations to satisfy the requirements of SDDP [238].

4.3
Strategic agents

The optimization of an independent agent, or owner, can also be modeled
as a multi-stage stochastic optimization problem. It was modeled and first
solved with SDDP in [212]. Model (4-10)–(4-16), representing the optimization
of an individual agent, i, is very similar to (4-1)–(4-7), the centralized operation
model. (4-10) represents a Bellman recursion analogous to the one of the
centralized dispatch. The main difference in the objective function is that there
is a new term to represent the revenue of the agent in the given stage t for a
random event ωt as a function of the energy e produced by the agent. (4-11)
states that e equals the total generation of all resources possessed by an agent.
Finally, (4-12)–(4-16) are almost the same as (4-3)–(4-7) but only considering
plants owned by the given agent, i.
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B̃t
(
vt

i, a
[t−1]
i , ωt

)
=

min −Λ̃(e, ωt) +
∑

j∈JG
i

Cjgj+

Eωt+1

[
B̃t+1

(
vt+1

i , a[t]
i , ω

t+1
)]

(4-10)

s.t.

e =
∑

j∈JG
i

gj +
∑

j∈JH
i

ρj(uj) +
∑

j∈JR
i

rj (4-11)

vt+1
j = vt

j − uj − zj +
∑

y∈JU (j)
(uy + zy) + at

j, ∀j ∈ JH
i (4-12)

0 ≤ vj ≤ Vj, 0 ≤ uj ≤ Uj, 0 ≤ zj,∀j ∈ JH
i (4-13)

0 ≤ gj ≤ Gj, ∀j ∈ JH
i (4-14)

0 ≤ rj ≤ R̃j(ωt), ∀j ∈ JR
i (4-15)

at
j =

∑
l∈L

ϕj,la
t−l
j + ε̃t

j(ωt), ∀j ∈ JH
i (4-16)

One fundamental challenge in this procedure is that it requires that all
hydro plants that are connected must belong to a single agent. This hypothesis
is also assumed in previous works like [213]. Handling different owners in the
same river system can be done by considering a water wholesale market besides
the energy market as done in [239]. Alternatively, other market designs, such
as 1) hydro slices, in which agents are owners of a fraction of the cascade
and, consequently, can optimize their strategies as if they did not share the
cascade, and 2) virtual hydro reservoirs, in which all hydro plants of a system
are aggregated in a single reservoir which is then split proportionally among
all agents, for more details see [240].

Analogously to the previous section, we present the approximated version
of the problem to be solved by the SDDP algorithm in (4-17)–(4-18). The
key change is that the revenue function uncertainty might be time-dependent,
just like the inflow processes. While the inflow time dependency is handled
by an expanded state-space considering inflow lags, the time dependency in
the revenue function is modeled with a Markov Chain. Hence, we apply the
Markovian SDDP as in [207] – this Markovian representation was not needed
in [212, 213] that considers a time-independent revenue function, perfectly
determined by the system’s thermal plants. Therefore, we have the epigraph
of multiple FCFs, one FCF for each possible Markov state, m, represented by
αm, and the respective cuts in (4-16).
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B̃t
µ,K

(
vt

i, a
[t−1]
i , ωt

µ

)
=

min −Λ̃(e, ωt
µ) +

∑
j∈JG

i

Cjgj +
∑

m∈JM

Mµ|mαm (4-17)

s.t.

(4-11)− (4-16)

αm ≥ βk
m +

∑
j∈JH

i

(
γk

j,mv
t+1
j +

∑
l∈L

δk
j,l,ma

t+1−l
j

)
,∀m ∈ JM , k ∈ [K] (4-18)

In the case of price-taker agents, their operation can be optimized by
considering the revenue function, as in [207]:

Λ̃(e, ω) = π(ω)e (4-19)

where π(ω) is a scenario of spot prices that might be obtained from any model,
including a previous optimization of the system centralized dispatch from the
previous section.

On the other hand, price-maker agents have the ability to affect spot
prices with their energy offers. In other words, π is no longer an exogenous
input data, it is a function of the energy offer of agent i: e. In this case, price
and quantity bids from other agents are considered random variables depending
on the uncertainty ω, and are given {(Pj(ω), Qj(ω)), j ∈ I−i}. With those bids,
we follow the same rationale of [212, 213]. Therefore, we write the following
model that expresses a simple bid-based dispatch problem:

π(e, ω) ∈ arg min
∑

j∈I−i

Pj(ω)qj (4-20)

s.t.
∑
j∈I

qj = D : π (4-21)

0 ≤ qi ≤ e (4-22)

0 ≤ qj ≤ Qj(ω), ∀j ∈ I−i (4-23)

This is analogous to a market clearing problem, in which a system operator
selects the optimal amounts of energy to attain the demand in (4-21), under
the limits (4-22)–(4-23) given by the current agent offer and the other players’
offers. The main result is the spot prices, the dual variable of (4-21). Now we
simply define:

Λ̃(e, ω) = π(e, ω)e (4-24)
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Combining (4-10)–(4-16), (4-24) and (4-20)–(4-23) completes the definition
of the strategic agent MSO problem, where each sub-problem is a bilevel
optimization problem as follows:

B̃t
(
vt

i, a
[t−1]
i , ωt

)
=

min −π(e, ωt)e+
∑

j∈JG
i

Cjgj+

Eωt+1

[
B̃t+1(vt+1

i , a[t]
i , ω

t+1)
]

(4-25)

s.t.

e =
∑

j∈JG
i

gj +
∑

j∈JH
i

ρj(uj) +
∑

j∈JR
i

rj (4-26)

vt+1
j = vt

j − uj − zj +
∑

y∈JU (j)
(uy + zy) + at

j, ∀j ∈ JH
i (4-27)

0 ≤ vj ≤ Vj, 0 ≤ uj ≤ Uj, 0 ≤ zj,∀j ∈ JH
i (4-28)

0 ≤ gj ≤ Gj, ∀j ∈ JH
i (4-29)

0 ≤ rj ≤ R̃j(ωt), ∀j ∈ JR
i (4-30)

at
j =

∑
l∈L

ϕj,la
t−l
j + ε̃t

j(ωt), ∀j ∈ JH
i (4-31)

π(e, ωt) ∈ arg min
∑

j∈I−i

Pj(ωt)qj (4-32)

s.t. (4-33)∑
j∈I

qj = D : π (4-34)

0 ≤ qi ≤ e (4-35)

0 ≤ qj ≤ Qj(ωt), ∀j ∈ I−i (4-36)

However, this strategic agent revenue function is a saw-shaped non-
convex piece-wise linear discontinuous function as detailed in [212, 213]. Thus,
to satisfy the SDDP convexity requirements, we follow the method proposed
in [212] and represent its convex hull of Λ̃(e, ω) with respect to e for a fixed ω:

convhull(Λ̃(e, ω)) = max
λj≥0

∑
j∈JV

λjE
R
j (ω) (4-37)

s.t.
∑

j∈JV

λjE
Q
j (ω) = e (4-38)

∑
j∈JV

λj = 1 (4-39)

where each pair (EQ
j (ω), ER

j (ω)) represents one vertex (in the the set of vertices
JV ) of the convex hull for the hypo-graph of Λ̃(e, ω). We keep the references
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to ω in the vertices of the convex hull to remember their dependency on
the random variables of the problem. We note that, theoretically, it would
be possible to represent the non-convex function with no approximations
with methods like SDDiP [24], but the computational cost for the problem
optimization would increase considerably.

Given the above reformulation, we can rewrite the model (4-25)–(4-36),
using (4-17)–(4-18) and (4-37)–(4-39), to obtain the convexified Markovian
SDDP form:

B̃t
µ,K

(
vt

i, a
[t−1]
i , ωt

µ

)
=

min −
∑

j∈JV

λjE
R
j (ωt

µ) +
∑

j∈JG
i

Cjgj +
∑

m∈JM

Mµ|mαm (4-40)

s.t.

e =
∑

j∈JG
i

gj +
∑

j∈JH
i

ρj(uj) +
∑

j∈JR
i

rj (4-41)

vt+1
j = vt

j − uj − zj +
∑

y∈JU (j)
(uy + zy) + at

j, ∀j ∈ JH
i (4-42)

0 ≤ vj ≤ Vj, 0 ≤ uj ≤ Uj, 0 ≤ zj,∀j ∈ JH
i (4-43)

0 ≤ gj ≤ Gj, ∀j ∈ JH
i (4-44)

0 ≤ rj ≤ R̃j(ωt
µ), ∀j ∈ JR

i (4-45)

at
j =

∑
l∈L

ϕj,la
t−l
j + ε̃t

j(ωt
µ), ∀j ∈ JH

i (4-46)

λj ≥ 0 (4-47)∑
j∈JV

λjE
Q
j (ωt

µ) = e (4-48)

∑
j∈JV

λj = 1 (4-49)

αm ≥ βk
m +

∑
j∈JH

i

(
γk

j,mv
t+1
j +

∑
l∈L

δk
j,l,ma

t+1−l
j

)
,∀m ∈ JM , k ∈ [K] (4-50)

which is clearly a linear subproblem.
As one of the key mechanisms to mitigate market power, we must also

be able to represent forward contracts [220]. This was not described in the
previous MSO models solved by SDDP. However, it is simple to modify the
revenue function to consider two additional terms as follows:

Λ̃(e, ω) = P FQF − π(e, ω)QF + π(e, ω)e (4-51)

the first term is the fixed revenue of the forward contract, the second represents
the energy that must be delivered due to the contract, and the third is
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Figure 4.1: Revenue curves, Λ̃(e, ω), for various values of QF .

the previously represented earnings from the spot market. The constants P F

and QF are input data. Consequently, they are not decision variables in the
optimization problems. Figure 4.1 shows revenue curves for a simple case
where P F = 0$, D = 40MWh, and we consider 3 price-quantity offers from
the other agents [(3$, 10MWh), (2$, 15MWh), (1$, 20MWh)]. Note that the
total quantity from the sum of the other agents’ offers is 45MWh, which is
higher than the demand, and, hence, no deficit occurs even if e = 0MWh.
This function is also non-convex, but we can represent its convex hull in the
optimization problem in the exact same way as the previously described case
with no contracts.

Finally, we remark that in both [212] and [213], the revenue function
is not stochastic since it only considers thermal bids in the form of thermal
installed capacities and operating costs and does not require the Markovian
SDDP. In this setting, we allow stochastic and time-dependent energy bids
from other agents. The more general framework of this work requires the usage
of Markovian SDDP, just like in the price taker case with spot price uncertainty
[207].

4.4
Multiple agents

Now we will combine the methodologies depicted in the previous sections
to describe a novel simulation algorithm that approximates the interaction be-
tween multiple price-maker and possible price-taker agents. All the interactions
between agents will be in terms of price and quantity bid offers as in a real
competitive energy market.
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First, we note that we can obtain an initial hint on the bids of multiple
agents from a simulation of the centralized operation of the power system.
As described in Section 4.2, the results of a simulation of the power system
include primal and dual variable solutions for each t and s. By collecting
the generation decisions of all plants of an agent, i, at a given stage and
scenario, we have the quantity bid, while the price part of the bid is given
by the corresponding spot price. We denote the set of price and quantity bids
of an agent i as (Pi,Qi) = {Pi,t,s, Qi,t,s}t∈T,s∈S, which means that there is
one pair of price and quantity for each sampled scenario, s ∈ S, and stage,
t ∈ T . We will name the procedure of solving a centralized dispatch and
obtaining both spot prices Π = {πs,t}t∈T,s∈S and bids for all agents (P ,Q)
as CentralizedOperation(A,R). The inputs (A,R) represent scenarios of
inflows and renewable maximum generation, which are samples of the random
variables for all stages. Because bids and spot prices, (P ,Q,Π ), are obtained
from a procedure that depends on inflows and renewable generation, (A,R),
all these have to be considered dependent random variables.

The self-optimization of strategic agents requires bids from all other
agents as described in Section 4.3. We also highlighted that all price and
quantity bids from other agents could be seen as time-dependent random vari-
ables in case they come from non-purely thermal price-taker agents. There-
fore, solving this multi-stage stochastic problem will require the Markovian
SDDP to handle the time dependency of the random variables. We can es-
timate a Markov Chain based on inflows, renewable generation, spot price,
and bid data, (A,R,Π ,P ,Q) that are all the random variables associated
to the strategic agent optimization. The estimation of the Markov chain re-
sults in transition probabilities M t

µ|m between the Markov states µ and m

for each stage t. The collection of transition probabilities, M t
µ|m, between

all Markov states for all stages, t ∈ T , will be denoted as M. This pro-
cess that takes the tuple (A,R,Π ,P ,Q) and returns M, will be denoted as
EstimateMarkovChain(A,R,Π ,P ,Q).

Meanwhile, the strategic optimization of an agent, i, as a func-
tion of the inflows, A, renewable generation, R, bids of other agents,
(P−i,Q−i) and the Markov transition probabilities, M, will be labeled
StrategicBid(A,R,P−i,Q−i,M). Analogous to the simulation step of
CentralizedOperation(A,R), the StrategicBid(·) will return an updated
bid, (Pi,Qi), for the optimized agent, i: the quantities will be the primal
solutions of the energy offer e, and prices will be obtained by computing the
respective spot price in (4-20)–(4-23).

Finally, we can obtain updated spot prices, Π , by clearing the market
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for each stage and scenario given bids from all agents, (P ,Q). We will label
the procedure: ClearMarket(P ,Q).

The complete simulation algorithm is based on the diagonalization
method extensively used in the literature of competitive hydro-power markets
[221, 228, 229, 226, 230]. We will resort to the above-defined procedures to
initialize and then iteratively update the bids of one price maker agent at a
time while the bids from other agents are fixed. The process stops when changes
in those bids are within some given tolerance. The main goal is to simulate the
power market in an agent-based fashion. If convergence is strictly attained, we
might have reached a Nash equilibrium. However, such an equilibrium might
not even exist in this setting.

Algorithm 2 depicts the proposed method. The algorithm starts by
computing bids, (P ,Q), for all price taker and price maker agents with the
CentralizedOperation(A,R) procedure. The bids from price taker agents will
be frozen from this point onward as they are assumed to believe that their
optimal bids are their opportunity costs [56, 207]. Then, a first estimate of
the Markov process is made with the EstimateMarkovChain(A,R,Π ,P ,Q)
procedure. After that, there will be a loop through all the price maker
agents, i ∈ I∗. For each agent i, new bids, (Pi,Qi), will be obtained from
the StrategicBid(A,R,P−i,Q−i,M) procedure. Then, spot prices and the
Markov process estimation will be updated by calls to ClearMarket(P ,Q) and
EstimateMarkovChain(A,R,Π ,P ,Q). Finally, if some convergence criterion
is attained, the algorithm stops, otherwise, it continues to a new round of bid
updates of the price maker agents. The convergence criterion considered in this
work is assuring the maximum absolute variation of the price and quantity bids
of all agents vary less than a given small number: 1% of their values in the
centralized operation.

Algorithm 2: Multiple Agent Simulation
(P ,Q,Π )← CentralizedOperation(A,R)
M← EstimateMarkovChain(A,R,P ,Q,Π )
while no convergence do

for i ∈ I∗ do
(Pi,Qi)← StrategicBid(A,R,P−i,Q−i,M)

end
Π ← ClearMarket(P ,Q)
M← EstimateMarkovChain(A,R,P ,Q,Π )

end
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4.5
Case studies

Now, we apply the simulation procedure of Section 4.4 in various settings.
We start with a sensitivity analysis in a representation of the Brazilian South-
east subsystem, which accounts for about 55% of the Brazilian hydro resources
and about 50% of the system’s total installed capacity. We will analyze diverse
possible market concentration and contracting schemes. In a second case study,
we will consider a database developed from the complete Brazilian system that
is very large scale. We will apply the proposed methodology to contrast re-
sults from simulations with and without contracts. Many simplifications were
done in both power systems, including not considering many thermal, hydro,
and other policy constraints in order to keep the analysis straightforward and
demonstrate the capabilities of the proposed simulation procedure without
distracting the reader.

4.5.1
The Brazilian Southeastern System

This system was constructed from real-life data considering the Brazilian
system expansion scenario for 2025 and contains 46 thermal plants that were
kept as close as possible to the original ones and 21 hydro plants with a
simplified topology of the system. Note that this is already more than the
current 13 aggregated reservoirs considered in the official model. The overall
hydro generation installed capacity represents 70% of the system’s installed
capacity. We will consider 3 hydro plant owners: one price taker agent and two
price maker agents. The 21 hydro plants are split into 3 groups of 7 plants. One
group for each of the two price maker agents and the third group for the price
taker agent. All thermal plants are considered individual price-taker agents.
We considered a single load block for simplicity. The following simulations were
carried out in a 5-year monthly horizon, that is, 60 stages. We considered 1000
sampled scenarios. The large-scale simulations were performed in a PSRCloud
cluster of 8 servers, each one with 64 cores and 128GB of RAM. Each simulation
took approximately 3 hours.

4.5.2
Market concentration analysis

In this section, we present 5 simulations with different market concen-
trations. We adapted the hydro plants so that we have different databases
represented by tuples (share1%, share2%) where share1 and share2 represent
the percent shares of the hydro system belonging to each of the two price maker
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(4.2(a))

(4.2(b))

Figure 4.2: Results for simulations of Brazil’s Southeast under different market
concentrations with no contracts. In parentheses in the horizontal axis, we have
the percent share of each price maker agent. Average values of Spot Prices,
Normalized Revenue, Spillage, and Storage Level are with respect to all stages
and scenarios. Spillage and Storage % are with respect to the maximum amount
of water that can be stored in the system.

agents. The remainder of the hydro system is allocated to the price-taker hydro
agent.

In Figure 4.2(a), we show the average spot prices as a function of the
market distributions in a bar plot, we add the first bar with the spot price
of the centralized dispatch. As expected, the spot prices rapidly grow as the
concentration increases. The Figure also shows the average value of energy sold
which is the total revenue of the agent divided by the total energy generated
by the agent, which we will call captured price. We present results in such
normalized forms so that we can compare the results of different-sized agents.

Figure 4.2(b) shows additional results with average reservoir levels of the
price maker agents throughout the study period and the average spillage.

Figure 4.3(a) and Figure 4.3(b) present a typical convergence profile of
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(4.3(a))

(4.3(b))

Figure 4.3: Convergence profile from Brazil’s southeast with (25%, 50%) and
no contracts. See Figure 4.2(a). (a) Average spot prices of each iteration. (b)
average spot price absolute and relative differences between two consecutive
iterations: (i+ 1)–(i).

the proposed iterative method. These profiles were taken from the case study
with price maker shares of (25%, 50%) and no contracts. Figure 4.3(a) shows
spot price averages for 12 consecutive iterations, the last value is the one
reported in Figure 4.2(a). Figure 4.3(a) show both average absolute and relative
differences between two consecutive iterations. First, absolute (or relative)
differences are computed for each stage and scenario, and then, they are
averaged.
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4.5.3
Contract analyses

In this section, we repeat the above analyses but with contracts. To
come up with monthly contract quantities, we take average generation values
from the centralized dispatch and prices from the average spot prices in the
centralized dispatch. This will stimulate the agents to produce energy and
reduce the spot prices since being short in the contract together with high
spot prices will lead the agent to have expenses due to the second term in
(4-51).

Figures 4.4 and 4.5 contain the same metrics presented in the previous
section but for the cases of agents that are 75% and 100% contracted, respec-
tively. In the case studies, we can clearly see that the contracts completely
eradicated the market power, and the resulting spot prices are very close to
the ones obtained in the centralized dispatch. At the same time, the captured
revenues and reservoir levels were also moved to values very close to the ones
from the centralized dispatch.

4.5.4
Brazilian system data

This database was created from the original data of the Brazilian system
and contains 137 thermal plants representing 18% of the installed capacity, 364
renewable energy plants (wind and solar) representing 19% of the installed
capacity and 32 hydropower plants representing the remaining 63% of the
installed capacity. Here, we improve the load duration curve accuracy and
consider 5 load blocks instead of just one to consider peak demand hours. Just
like in the previous studies, we consider 5 years (60 monthly stages), 1000
scenarios and the same PSRCloud cluster configuration.

In this study, we consider an approximation of the real market concentra-
tion in the system. We represent 3 price maker agents, with respectively 32%,
9% and 7% of the energy resources representing the 3 largest power plant own-
ers. Meanwhile, the remaining 55% of the resources are distributed among one
purely hydro price taker agent and each thermal plant being yet another small
price taker, representing all the smaller agents that are assumed to behave
as price takers due to their comparatively reduced size. Each simulation took
approximately 11 hours.
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(4.4(a))

(4.4(b))

Figure 4.4: Results for simulations of Brazil’s Southeast under different market
concentrations with 75% of contracting level. In parentheses in the horizontal
axis, we have the percent share of each price maker agent. Average values of
Spot Prices, Normalized Revenue, Spillage, and Storage Level are with respect
to all stages and scenarios. Spillage and Storage % are with respect to the
maximum amount of water that can be stored in the system.

4.5.5
Brazilian system simulations

First, we simulated the centralized operation, the bid-based market with
no contracts, then we considered agents with multiple contracting levels in the
bid-based market. In particular, we analysed the cases of: 25%, 50%, 75% and
100% of contracting level. The key results from each of the 6 simulations are
depicted in Figures 4.6 and 4.7.

Figure 4.6 shows the spot price under each of the above 6 conditions.
We can clearly see the progression from the highest spot prices when there
are no contracts in the bid-based market, allowing for agents to exercise their
market power until the fully contracted case, in which the average spot price is
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(4.5(a))

(4.5(b))

Figure 4.5: Results for simulations of Brazil’s Southeast under different market
concentrations with 100% of contracting level. In parentheses in the horizontal
axis, we have the percent share of each price maker agent. Average values of
Spot Prices, Normalized Revenue, Spillage, and Storage Level are with respect
to all stages and scenarios. Spillage and Storage % are with respect to the
maximum amount of water that can be stored in the system.

much closer to the one obtained from the centralized operation of the system.
Given the number of resources allocated to the price maker agents, 45%, we
note that a 75% contracting level is already very effective in reducing the
gap to the centralized operation. This follows closely what we have seen in
the simulations of the southeastern system. In particular, 75% was also very
effective in containing market power in the case where the first price-maker
agent had 15%, and the second price maker had 30%, of the resources resulting
in 45% in the hands of price-maker agents. Finally, we note that even very low
contracting levels (25%) make a difference in the final average spot prices.

Figure 4.7 presents the overall revenue, including operation and contract
costs and spot and contract revenue throughout the 5-year horizon for each of
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Figure 4.6: Average Spot Price ($/MWh) for the Brazilian system under
different contracting levels. Averages with respect to stages and scenarios.

Figure 4.7: Average normalized revenue ($/MWh) for each of the 3 price maker
agents under different contracting levels. Averages with respect to stages and
scenarios.

the 3 price maker agents. Overall, the figure reproduces information already
verified in Figure 4.6 with excessive revenues for all agents for the bid-based
cases with no contracts. Notably, the 100% contracting case leads to revenues
that are very similar to the ones from the centralized dispatch. Again, 75%
seems to be an interesting value since it leaves the system very close to the
centralized version in terms of agent remuneration.

4.6
Conclusion

Based on relevant works on long-term hydrothermal power markets, we
combined three key pieces to develop a new and effective market simulator,
namely: 1) SDDP applied to the centralized hydrothermal dispatch to initialize
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and benchmark the process, 2) a multistage bilevel stochastic model for
strategic bidding of a single-player to obtain decisions from price maker agents,
and 3) an iterative diagonalization-based method to simulate the interactions
among agents in the market. In contrast to the existing literature on the
subject, with our new algorithm, we could jointly consider multiple reservoirs
(32), multiple stages (60) and scenarios (1,000), and multiple price-maker
agents (3). Therefore, a realistic large-scale case study based on the Brazilian
power system (one of the largest in the world) could be addressed, and relevant
insights could be obtained.

More specifically, we successfully performed multiple simulations of large-
scale power systems. In a first sensitivity analysis in the Brazilian southeastern
system, we could observe how the variation of market power concentration can
lead to situations where market power is clearly detrimental to the market.
In the follow-up analysis, we showed how contracts could be used to mitigate
the market power leading to much more reasonable situations even at a 75%
contracting level, and, at the 100% contracting level, the market power is
completely eradicated. In the final study, we simulated a power system based
on Brazil’s real data, including all the most important generators of the system.
We attempted to represent three large strategic agents in realistic proportions,
given their current portfolios. The final results demonstrate that in the current
setting of Brazilian market concentration, it is susceptible to market power.
Finally, we showed that contracts could indeed be a very important tool to
mitigate the market power and improve the market design towards the solution
for social wealth maximization.

We highlight that a tool such as this can be extremely useful for market
monitors. Simulating a power system to understand what might be happening
is a first step towards understanding what is currently happening in an
existing power system. Also, policy developers and market designers can profit
from such tooling to experiment with alternative designs and come up with
new solutions. On the algorithmic side, the method is amenable to parallel
computing and is flexible to be extended to consider other physical and
regulatory details. Notwithstanding, we showcase that a real-world problem
formulated as a multistage bilevel stochastic problem can be solved under
reasonable assumptions and provide relevant insights to decision-makers and
regulators.
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5
Conclusions and Future Directions

In this thesis, we presented a selection of 3 works developed during
the Ph.D. program. Each of the works, in its own way, contributes to the
state of the art of Bilevel Optimization. Moreover, they also contribute to the
fields of Stochastic Optimization, Optimization Software and Power Systems.
Contributions vary in a large range, including methodologies, algorithms,
theoretical developments, open-source software, and case studies.

We applied bilevel optimization, stochastic programs and computational
methods to important problems in the power systems industry. In applications
(Chapters 3 and 4), we were especially interested in methodologies that can
be applied to real-world problems, and, hence, we developed efficient methods
that cleverly employ optimization techniques and parallel computing to tackle
such problems. Due to our needs, we developed a package to model and solve
bilevel programs that were made open-source.

Firstly, Chapter 2 presents the BilevelJuMP.jl open source package
that extended the JuMP modeling language to handle bilevel optimization. The
software implements both a modeling interface and solution techniques that
allow users with different backgrounds to formulate and solve their first bilevel
program or select specific methods that better perform for a given problem.
The package also included innovative features such as the possibility of
modeling lower-level conic programs or using different linearization techniques
for each constraint.

The bilevel optimization software can be extended to handle more classes
of problems, such as the ongoing developments on mixed integer lower level.
Other fronts of development should include approximation algorithms that re-
turn good feasible solutions. Once the foundational package MathOptInterface
is generalized so that nonlinear constraints are first class, BilevelJuMP.jl
can be modified to accept non-linear constraints in the lower level.

Secondly, in Chapter 3 we presented a general application-driven learning
algorithm that can be used in a broad range of applications. Besides proposing
and mathematically describing the innovative framework, we developed both
exact and heuristic algorithms. We highlight that the developments of Chapter
2 were not only fundamental during the experimentation process but also were
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used in the exact method. Then we described an application of the framework
to demand forecasting and reserve optimization. And we concluded the work
by empirically demonstrating its properties and scalability in systems with
thousands of buses.

In the future, application-driven learning should be applied to other
problems both in and out of the power systems area. Exploring other cases
for the demand forecast and reserve problem and using larger servers to
improve results. Other algorithmic and theoretical developments can help the
methodology achieve outstanding results. Finally, a package can be developed
to facilitate the usage on the practitioner side.

Finally, in Chapter 4, we presented a methodology to simulate long-term
bid-based hydro-thermal power systems. The methodology combines previous
works and its main characteristic is its scalability. Which permits simulations
of large-scale power systems in settings with multiple scenarios and stages.
In particular, we applied the proposed methodology to the Brazilian system,
one of the largest power systems in the world with large hydro penetration,
considering a study horizon of 60 stages and 1000 scenarios.

The market simulator can be extended to consider many other constraints
from real-world power systems and we can experiment with variants of the
algorithms to improve performance and the quality of the results. Additional
parallel schemes can also be used to improve performance. Applying the
method to other power systems would allow the user to validate additional
functionality.

We close our remarks by highlighting the power of bilevel optimization
that enabled us to model extremely relevant power systems problems. More-
over, we both acknowledge the challenges posed by this class of optimization
problems and we underline the importance of well-tested benchmark exact
methods, approximate algorithms and high-performance computing that al-
lowed us to achieve meaningful results.
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